

News of h_c and $\eta_c(2S)$ from BESIII

辽宁师范大学

(On behalf of the BESIII Collaboration)

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 大连, 2022.08.10

Outline

- Charmonium spectrum
- BESIII Datasets
- Analysis topics
 - Observation of $\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$
 - Study of the h_c meson via $\psi(2S) \rightarrow \pi^0 h_c$ decays
 - Observation of $h_c \rightarrow p \overline{p} \eta$
 - Search for the decay $h_c \rightarrow \pi^0 J/\psi$
- Summary

Charmonium spectrum

Experimentally accessible quantum numbers:

JPC

Derived quantum numbers:

 $n^{2S+1}L_J$

Relationships:

 $P = (-1)^{L+1}$ $C = (-1)^{L+S}$

Charmonium spectrum

Experimentally accessible quantum numbers:

JPC

Derived quantum numbers:

n^{2S+1}L_J

Relationships:

$$P = (-1)^{L+1}$$
 $C = (-1)^{L+S}$

BESIII Datasets

Observation of $\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$

Data: $(448.1 \pm 2.9) \times 10^{6} \psi(2S)$

arXiv:2206.08807

- ✓ Looking for new decay modes of $\eta_c(2S)$ such as $3(\pi^+\pi^-)$ will provide more concrete avenues of approach of $\eta_c(2S)$ in experimental and theoretical research and better understand its properties.
- ✓ Observed $\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$ for the first time which significance is 9.3 σ .

Observation of $\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$

Data: $(448.1 \pm 2.9) \times 10^{6} \psi(2S)$

arXiv:2206.08807

✓ Mass and width of η_c (2S) are measured which are consistent with the world average values within 2σ .

M [$\eta_c(2S)$] = 3643.4 ± 2.3 ± 4.4 MeV/c² Γ [$\eta_c(2S)$] = 19.8 ± 3.9 ± 3.1 MeV

✓ Using B[$\psi(2S) \rightarrow \gamma \eta_c(2S)$] =(7.0^{+3.4}_{-2.5}) × 10⁻⁴ ^[13], we obtain B[$\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$] and update B[$\chi_{cJ} \rightarrow 3(\pi^+\pi^-)$] at the same time.

1-y				
Channel	$N_{ m data}^{ m sig}$	$\epsilon^{ m corr}$ (%)	$\mathcal{B}_{\text{measured}} (imes 10^{-2})$	$\mathcal{B}_{ m PDG}~(imes 10^{-2})$
$\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$	568.8 ± 63.3	13.84 ± 0.01	$1.31 \pm 0.15 \pm 0.13^{+0.64}_{-0.47}$	-
$\chi_{c0} \rightarrow 3(\pi^+\pi^-)$	145300 ± 396	15.92 ± 0.01	$2.080 \pm 0.006 \pm 0.068$	1.20 ± 0.18
$\chi_{c1} \rightarrow 3(\pi^+\pi^-)$	84317 ± 299	17.67 ± 0.01	$1.092 \pm 0.004 \pm 0.035$	0.54 ± 0.14
$\chi_{c2} \rightarrow 3(\pi^+\pi^-)$	112510 ± 347	16.85 ± 0.01	$1.565 \pm 0.005 \pm 0.048$	0.84 ± 0.18

 Compared to the world average values, the measured values are almost twice as large. To validate our results, we perform a number of cross-checks and the results are consistent with each other and agree with the nominal results.

Study of the h_c meson via $\psi(2S) \rightarrow \pi^0 h_c$ decays

Data: $(448.1 \pm 2.9) \times 10^{6} \psi(2S)$

arXiv:2204.09413

- ✓ The h_c resonance features are of particular importance inside the theoretical framework built to explain the $c\overline{c}$ spectrum.
- ✓ Using the π^0 recoil mass distribution to reconstruct the h_c mass, both inclusively $(\psi(2S) \rightarrow \pi^0 h_c)$ and by tagging the decay via the electric dipole (E1) transition photon from h_c → $\gamma\eta_c$.

Study of the h_c meson via $\psi(2S) \rightarrow \pi^0 h_c$ decays

Data: $(448.1 \pm 2.9) \times 10^{6} \psi(2S)$

✓ The fit results are summarized in the table which shows the improved precision of this measurement with respect to the PDG values ^[5] and compatibility within 1σ .

Variable	Value	PDG Value 5
$M(h_c)~({ m MeV}/c^2)$	$3525.32 \pm 0.06 \pm 0.15$	3525.38 ± 0.11
$\Gamma(h_c)$ (MeV)	$0.78 \ ^{+0.27}_{-0.24} \pm 0.12$	0.7 ± 0.4
$N_{ m Tag}(h_c)$	$23118 \ ^{+1500}_{-1398}$	
$\mathcal{B}_{\mathrm{Inc}} imes \mathcal{B}_{\mathrm{Tag}} \ (10^{-4})$	$4.17 \ ^{+0.27}_{-0.25} \pm 0.19$	4.58 ± 0.64 (BESIII II) 4.16 ± 0.48
$\mathbf{N}_{\mathbf{r}}$		(CLEO 23)
$N_{ m Inc}(h_c)$	46187 ± 2123	87.00
$\mathcal{B}_{\mathrm{Inc}}~(10^{-4})$	$7.23 \pm 0.33 \pm 0.38$	8.60 ± 1.30
$\mathcal{B}_{\mathrm{Tag}}$ (%)	$57.66^{+3.62}_{-3.50} \pm 0.58$	50 ± 9

•
$$\mathcal{B}_{\text{Inc}}(\psi(2S) \rightarrow \pi^0 h_c) \times \mathcal{B}_{\text{Tag}}(h_c \rightarrow \gamma \eta_c) = \frac{N_{\text{Tag}}}{\epsilon_{\text{Tag}} \times N(\psi(2S))};$$

•
$$\mathcal{B}_{\text{Inc}}(\psi(2S) \to \pi^0 h_c) = \frac{N_{\text{Inc}}}{\epsilon_{\text{Inc}} \times N(\psi(2S))};$$

•
$$\mathcal{B}_{\mathrm{Tag}}(h_c \to \gamma \eta_c) = \frac{\mathcal{B}_{\mathrm{Inc}}(\psi(2S) \to \pi^0 h_c) \times \mathcal{B}_{\mathrm{Tag}}(h_c \to \gamma \eta_c)}{\mathcal{B}_{\mathrm{Inc}}(\psi(2S) \to \pi^0 h_c)} = \frac{N_{\mathrm{Tag}} \times \epsilon_{\mathrm{Inc}}}{N_{\mathrm{Inc}} \times \epsilon_{\mathrm{Tag}}}.$$

[5] PTEP 2020, 083C01(2020).
[11] Phys. Rev.Lett. 104, 132002 (2010).
[23] Phys. Rev.Lett.101,182003 (2008)

arXiv:2204.09413

Observation of $h_c \rightarrow p \overline{p} \eta$

Data: $(448.1 \pm 2.9) \times 10^{6} \psi(2S)$

- ✓ First search for the $h_c \rightarrow p \overline{p} X$ (X = $\pi^+\pi^-\pi^0$, η , π^0) decays.
- ✓ The decay channel $h_c \rightarrow p \bar{p} \eta$ is observed for the first time with a 5.1 σ statistical significance.
- ✓ Evidence for the decay $h_c \rightarrow p p \pi^+ \pi^- \pi^0$ is found with a statistical significance of 4.9 σ .
- ✓ No obvious signal for $h_c \rightarrow p \overline{p}$ π^0 is seen.

JHEP05(2022)108

Observation of $h_c \rightarrow p p \eta$

Data: $(448.1 \pm 2.9) \times 10^{6} \psi(2S)$

✓ The branching fractions of $h_c \rightarrow p p X$ are determined by

$$\mathcal{B}(h_c \to p\bar{p}X) = \frac{N^{\text{sig}}}{N_{\psi(3686)} \cdot \mathcal{B}(\psi(3686) \to \pi^0 h_c) \cdot \prod_i \mathcal{B}_i \cdot \varepsilon}.$$

Mode	I	III	
$p\bar{p}X$	$p\bar{p}\pi^+\pi^-\pi^0$	$p\bar{p}\pi^0$	—
N_{h_c}	86.5 ± 18.7	< 57	
$\mathcal{B}(h_c \to p\bar{p}X)$	$(3.84 \pm 0.83 \pm 0.69 \pm 0.58) \times 10^{-3}$	$< 6.59 \times 10^{-4}$	
$\mathcal{B}(\psi(3686) \to \pi^0 h_c) \times \mathcal{B}(h_c \to p\bar{p}X)$	$(3.30\pm0.71\pm0.59)\times10^{-6}$	$< 5.67 \times 10^{-7}$	
Significance(σ)	4.9	17277).	=
Mode	II		
$p\bar{p}\eta$	$\eta ightarrow \pi^+ \pi^- \pi^0$ η	$\eta \to \gamma \gamma$	[6]Phys. Rev. D 99, (2019) 072008
N_{h_c}	3.4 ± 0.9 18	3.1 ± 4.9	[7] Phys. Rev. D 102, (2020) 112007
${\cal B}(h_c o p \bar p \eta)$	$\mathcal{B}(h_c \to p\bar{p}\eta)$ (6.41 ± 1.74 ± 0.53 ± 1.00) × 10 ⁻⁴		
$\mathcal{B}(\psi(3686) \to \pi^0 h_c) \times \mathcal{B}(h_c \to$	$p\bar{p}\eta)$ (5.51 ± 1.50 ± 0.46	$) \times 10^{-7}$	
Significance(σ)	5.1		

✓ The branching fractions obtained in this analysis are at the level of ~10⁻³, which is the same level as the previously observed decays of $h_c \rightarrow 2(\pi^+\pi^-)\pi^0$, p p $\pi^+\pi^-$ ^[6] and $h_c \rightarrow K^+K^-\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^0\eta$, $K^0_SK^{\pm}\pi^{\mp}\pi^+\pi^-$ ^[7].

JHEP05(2022)108

Search for the decay $h_c \rightarrow \pi^0 J/\psi$

Data: L = 11 fb⁻¹, \sqrt{s} = 4.189 — 4.437 GeV

JHEP 05(2022)003

- ✓ In 1992, the E760 Collaboration reported an evidence of the h_c in the $\pi^0 J/\psi$ decay mode. Until now, there is no experimental result to confirm this.
- ✓ Search for $h_c \rightarrow \pi^0 J/\psi$ is reported using $e^+e^- \rightarrow \pi^+\pi^-h_c$ events from data samples at $\sqrt{s} = 4.189 4.437$ GeV.
- ✓ Additionally, the decay $h_c \rightarrow \gamma \eta_c \rightarrow \gamma K^+ K^- \pi^0$ is used as the normalization channel.

Search for the decay $h_c \rightarrow \pi^0 J/\psi$

Data: L = 11 fb⁻¹, \sqrt{s} = 4.189 — 4.437 GeV

JHEP 05(2022)003

13

✓ No significant signal is seen for the $h_c \rightarrow \pi^0 J/\psi$ decay, while a clear peak is present for the $h_c \rightarrow \gamma \eta_c$ decay.

Search for the decay $h_c \rightarrow \pi^0 J/\psi$

Data: L = 11 fb⁻¹, \sqrt{s} = 4.189 — 4.437 GeV

JHEP 05(2022)003

 $B(h_c \rightarrow \pi^0 J/\psi)/B(h_c \rightarrow \gamma \eta_c \rightarrow \gamma K^+ K^- \pi^0) < 7.5 \times 10^{-2} \text{ at } 90\% \text{ C.L.}$

Upper limit on the branching fraction $B(h_c \rightarrow \pi^0 J/\psi)$ at 90% C.L. can be determined to be

 $B(h_c \rightarrow \pi^0 J/\psi) < 4.7 \times 10^{-4}.$

This is the first upper limit measurement of $B(h_c \rightarrow \pi^0 J/\psi)$ which the results are not consistent with the measurements by the E760 Collaboration , while in agreement with the E835 Collaboration.

✓ The h_c total width is 0.7 ± 0.4 MeV from the PDG, and we take 1.1 MeV as the h_c total width conservatively. The upper limit on the partial width for h_c → $\pi^0 J/\psi$ is conservatively determined to be

 $\Gamma(h_c \rightarrow \pi^0 J/\psi) < 0.52 \text{ keV},$

which is one order-of-magnitude lower than the current theoretical predictions (several keV).

Summary

- ✓ BESIII has collected large data samples at $\sqrt{s} = 2 4.95$ GeV, which provide essential opportunity for the study of charmonium decay.
 - Observation of $\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$
 - Study of the h_c meson via $\psi(2S) \rightarrow \pi^0 h_c$ decays
 - Observation of $h_c \rightarrow p \overline{p} \eta$
 - Search for the decay $h_c \rightarrow \pi^0 J/\psi$
- ✓ In the future, more data will be collected, more detailed studies will be done and more results will come out !

Thanks for your attention!