Measurements of dielectron production in Au+Au collisions at 27 and 54.4 GeV with the STAR experiment

Zhen Wang (王 桢) Shandong University

中国物理学会高能物理分会 HIGH ENERGY PHYSICS BRANCH OF CPS

Dielectron production

Dielectrons – an excellent probe

- > Minimal interaction with the medium
- Carries information from the initial stage to the final stage of a collision

Different physics of interest

- > Low Mass Region (LMR, $M_{ee} < M_{\phi}$)
 - Vector meson in-medium modifications
 - \succ Possible link to chiral symmetry restoration
- > Intermediate mass region (IMR, $M_{\phi} < M_{ee} < M_{J/\psi}$)
 - QGP thermal radiation is predicted as a QGP thermometer

Physics interest : Adv. Nucl. Phys. 25 (2000) 1 Rapp: PoS CPOD2013, 008 (2013) PHSD: Phys. Rev. C 85, 024910 (2012);

STAR previous dielectron spectra results

- Hard to extract the temperature in the intermediate mass region
 - 200 GeV: High yield of heavy flavor quark semileptonic decay
 - 62.4 19.6 GeV: lack of statistics

Higher precision measurements now possible with new datasets at 27 and 54.4 GeV

High statistics compared to 27, 39 and 62.4 GeV datasets in BES-I program

Year	Energy	Used events
2018	27 GeV	500M
2017	54.4 GeV	875M
2011	27 GeV	68M
2010	39 GeV	132M
2010	62.4 GeV	62M

The STAR experiment

Key detectors used in this analysis

Dielectron spectrum

Clear enhancement compared to p excluded cocktail simulation in low mass region
The excess compared to cocktail simulation observed in intermediate mass region

Excess in low mass region

Excess = data - cocktail

- ➢ Both models can well describe 27 GeV in p mass region
- ➢ Rapp model describes data well but overestimate 54.4 GeV for 0.5 < M_{ee} < 0.9 GeV/c²
- \geq PHSD model describes data well but underestimate 54.4 GeV for M_{ee} > 0.9 GeV/c²

Temperature extract from low mass region

Excess dielectron spectra of 27 and 54.4 GeV Au+Au collisions and NA60 In+In collisions are similar

Temperature extract from low mass region

fitting function: $(a*BW+b*M^{3/2})*e^{-M/T}$

- Excess dielectron spectra of 27 and 54.4 GeV Au+Au collisions and NA60 In+In collisions are similar
- T is similar despite significant differences in collision energy and system size
- ➤ T extract from low mass region around the pseudo critical temperature T_{pc} (156 MeV)

Temperature extract from intermediate mass region

fitting function: $M^{3/2} * e^{-M/T}$

- Dielectrons from thermal radiation is the major source in intermediate mass region
- T extract from 27 and 54.4 GeV are consistant with each other

Temperature extract from intermediate mass region

fitting function: $M^{3/2} * e^{-M/T}$

- Dielectrons from thermal radiation is the major source in intermediate mass region
- T extract from 27 and 54.4 GeV are consistant with each other
- ➤ T at RHIC is higher than NA60 result (205+/-12 MeV)
- T is higher than pseudo critical temperature T_{pc} (156 MeV), indicating that the emission is predominantly from deconfined partonic phase - QGP

Temperature v.s. N_{part}

- > Temperatures have no clear centrality dependence in both mass region
- \succ Temperature from low mass region around phase transition temperature
- > Temperature from intermediate mass region is higher than that in low mass region

Temperature v.s. μ_B

Tch GCE/SCE: STAR PRC 96, 044904 (2017) c

- ➤ In low mass region, T_{LMR} is close to T_{ch} and T_{pc}, indicate that dielectrons dominantly emitted around phase transition
- ➢ In intermediate mass region, T_{IMR} is higher than T_{LMR}, T_{ch} and T_{pc}, indicate that dielectrons dominantly emitted from QGP phase

 T_{ch} : Chemical freeze-out temperature T_{pc} : Pseudo critical temperature

STAR BES-II program

- Measurement of dielectron spectra with high statistic data sample between 7.7 GeV and 19.6 GeV will be possible with STAR BES-II data
- Enhanced tracking and particle identification capabilities with iTPC and eTOF upgrades

Summary

Dielectron spectra in Au+Au collisions at 27 and 54.4 GeV in BES-II has been measured

Low mass region:

 \succ T_{LMR} ~ 170 MeV, first experimental evidence that in-medium p are dominantly produced around phase transition

Intermediate mass region:

- ➤ T_{IMR} ~ 320 MeV, first QGP temperature measurement at RHIC without distortion by medium flow
- \succ T > T_{pc} , radiation source is QGP thermal radiation

Thanks for your attention!

backup

