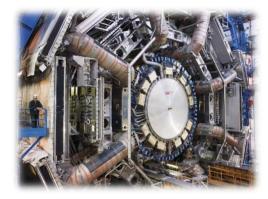
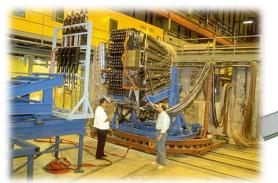
CSNS-II高能质子测试束实验终端的物理设计

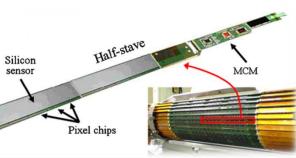
报告人: 敬罕涛

樊瑞睿、董明义、钱森、梁志均、易晗、韩艳良、谭志新、李志平、周凯、陈佳鑫、王平、于永积、史欣、刘勇、孙志嘉、陈元柏、王建春中国科学院高能物理研究所 散裂中子源科学中心加速器技术部

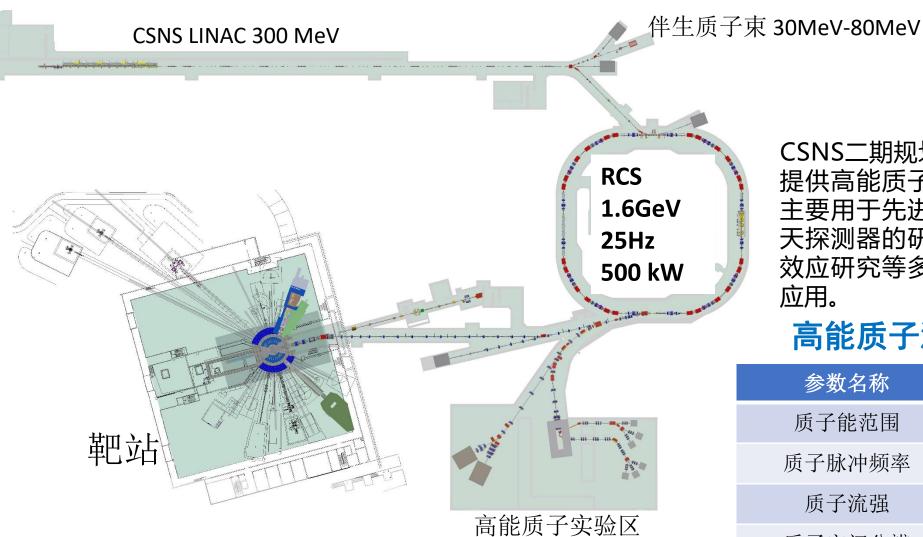

主要内容

- 项目建设意义
- 国内外主要测试束情况
- 中国散裂中子源上的单粒子束可行性
- 高能质子实验区终端物理设计及规划
- CSNS伴生质子束简介


意义和作用


随着我国在先进粒子探测器的研发能力不断提高,对高性能质子测试束流的需求越来越强烈。建成高性能的质子测试束流能满足国家重大项目、重大装置和关键测量任务等探测器的研发需要。

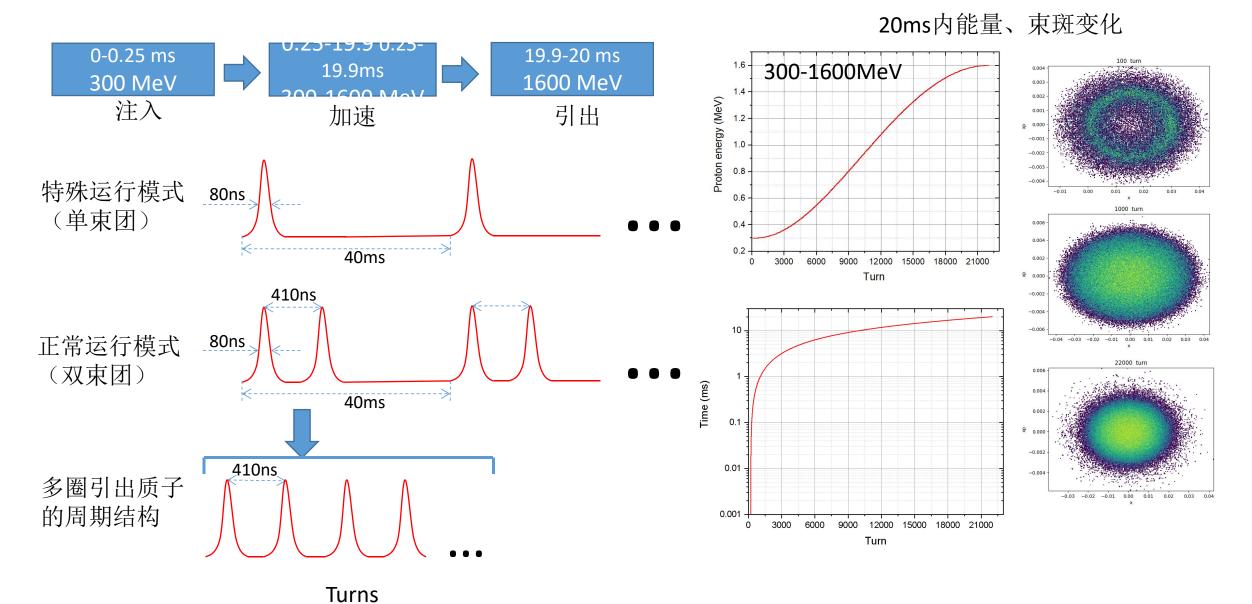
- 对撞机实验中高能粒子顶点探测器(vertex)实现高精度顶点分辨能力和动量分辨能力测试;
- 高能粒子量能器的能量测试和标定;
- 快电子学性能测试和标定;
- 探测器的辐照测试:



国内外主要的测试束

设施名称	所在机构	束线名称	国家	粒子类型	粒子能量
CERN SPS North Area	CERN	H2, H4, H6, H8	Switzerland	primariy protons, hadrons, muons, electrons, pions	10-400GeV/c
CERN SPS North Area	CERN	H2-VLE, H4-VLE	Switzerland	pions, protons, kaons	80 GeV/c
CERN SPS East Area	CERN	T8, T9, T10, T11	Switzerland	secondary	0.5~24 GeV/c
DESY II TBF	DESY	TB21	Germany	electron, position	0.8-6.2 GeV/c
BTF	INFN	BTF-1	Italy	electron, position	50-750 MeV
FTBF	FERMILAB	-	USA	protons	120 GeV/c
IHEP protvinos	IHEP Protvino	-	Russia	protons	70 GeV/c
IHEP protvinos	IHEP Protvino	-	Russia	protons, pions, muons, electrons(secondary)	1-45 GeV/c
IHEP Beijing	IHEP CAS	-	China	electron, position, protons, pions	0.1-1.2 GeV/c
RCNP	Osaka University	-	Japan	protons	400 MeV/c
piE1 piM1	PSI	-	Switzerland	pions, muons, positrons, protons	50-450 MeV/c
PIF	PSI	-	Switzerland	protons	5-230 MeV/c
ESTB	SLAC	-	USA	electron	2-15 GeV
CSNS	IHEP CAS	-	China	proton	0.8-1.6 GeV

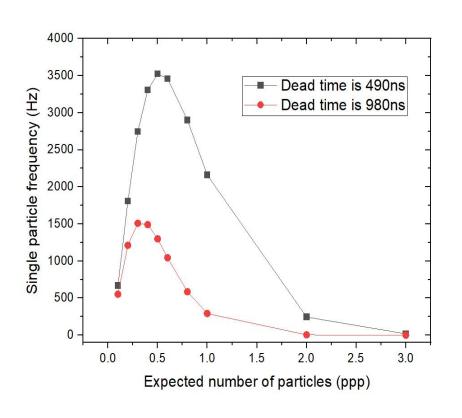
CSNS布局和高能质子实验区



CSNS二期规划建设的实验站之一, 提供高能质子测试束的实验条件, 主要用于先进粒子物理探测器和航 天探测器的研发和标定,以及辐照 效应研究等多个应用领域有重要的 应用。

高能质子测试束参数

参数名称	设计指标
质子能范围	0.8-1.6 GeV
质子脉冲频率	>1000 Hz
质子流强	<10 ⁵ n/cm ² /s
质子空间分辨	<10 μm

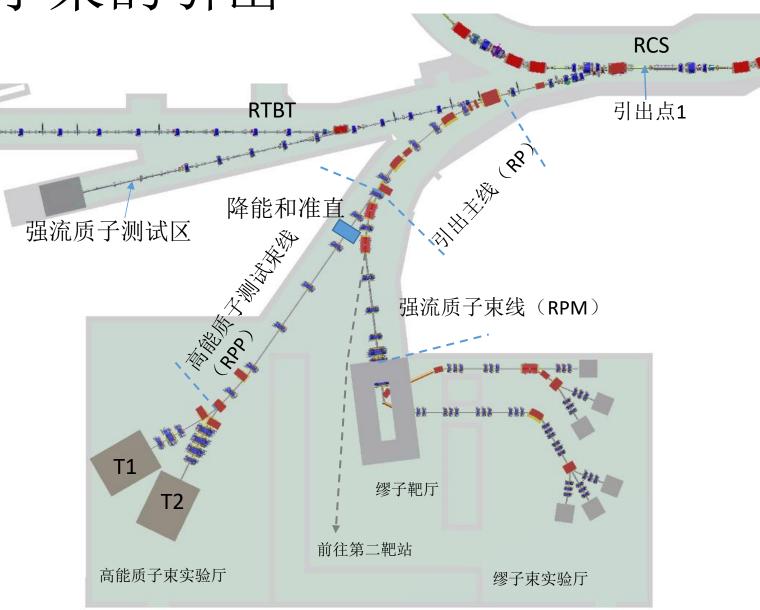

RCS中质子束的周期结构(25Hz)

单质子的频率

每个脉冲可能存在的粒子数的概率符合泊松分布: $P(x=k) = \lambda^{\kappa} e^{-\lambda} / \kappa!$

東团粒子 期望(ppp)	总的单粒子 计数(Hz)	死时间为410ns时的单 粒子计数(Hz)	死时间间隔为820ns时的 单粒子计数(Hz)
0.1	4516.5	669.1	551.7
0.2	8180.1	1808.2	1212.0
0.3	11104.1	2744.6	1509.1
0.4	13397.6	3307.4	1490.5
0.5	15155.7	3525.5	1298.8
0.6	16459.4	3459.9	1044.4
0.8	17960.4	2899.4	585.3
1	18384.7	2161.3	292.3
2	13551.5	244.2	4.6
3	7495.0	18.7	0.038

从环里面引出2000圈的流强是104-3*104 p/s (或者400-1200 /pulse);


CSNS二期高能质子束的引出

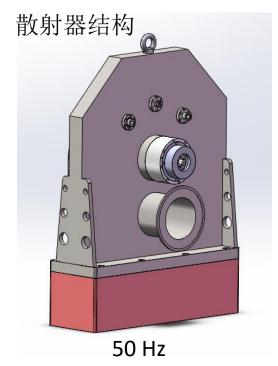
1. 慢引出

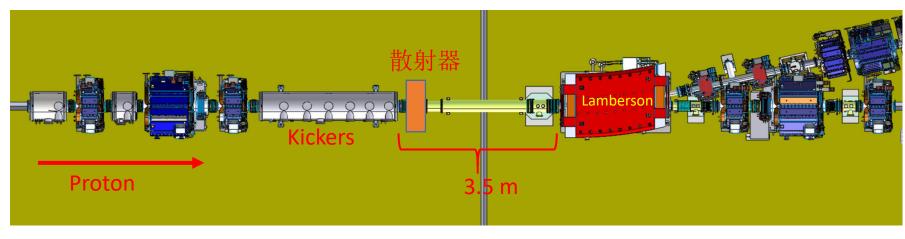
采用散射片方法,在环上慢引出,调制成单粒子束;

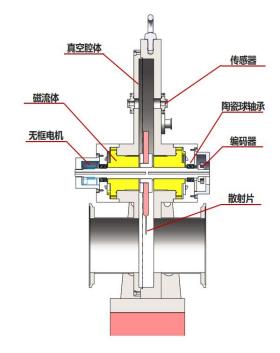
2. 强流质子束引出

采取从RTBT束线上将一个脉冲完整引出,用于辐照损伤测试;

弱高能质子束引出

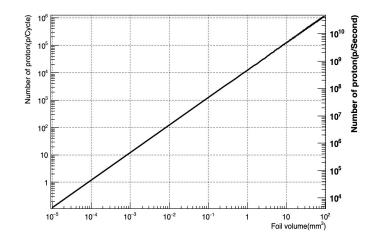

数射器引出的原理(垂直方向视图)


20mrad

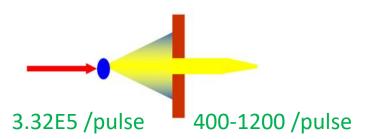

155mm

Lamberson

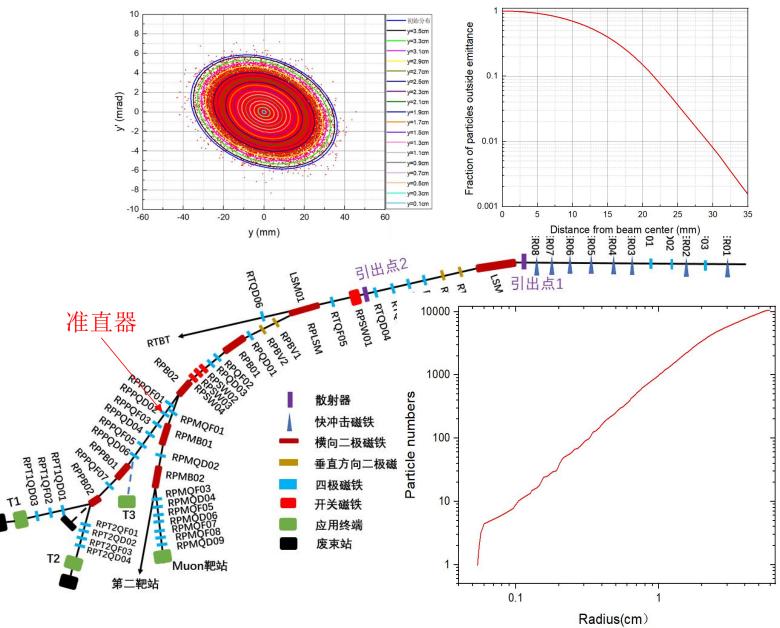
3.5m

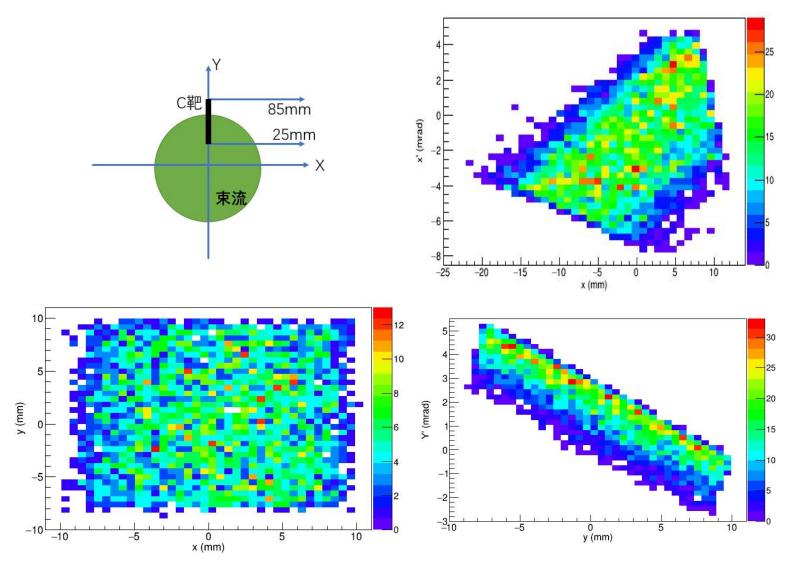


主要技术参数指标

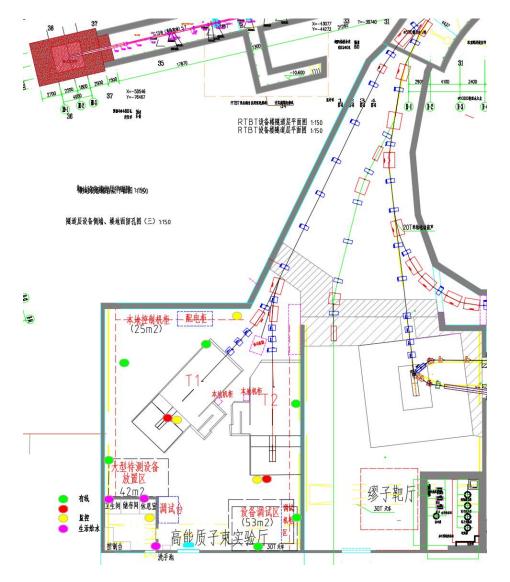

- (1) 阻挡片材质: 碳, 切束 部分厚度 0.1~0.3mm
- (2) 散射片作用深度 25-45mm
- (3) 工作转速: 25 Hz
- (4) 移动行程: 30mm
- (5) 定位精度: 0.1mm
- (6) 时间窗: 1-1.5 ms

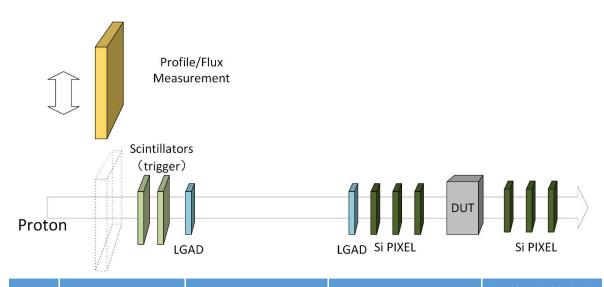
质子流强调节


1. 散射膜(丝)尺寸


3. 通过准直器调节接近3个量级调节量

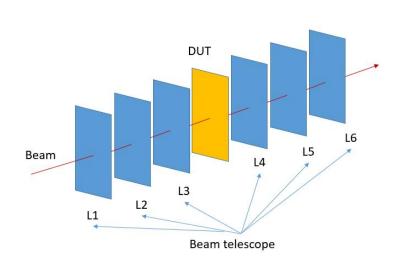
2. 调节散射膜在束流中的深度

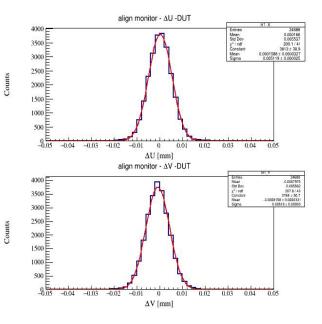



终端处相空间分布及束流参数

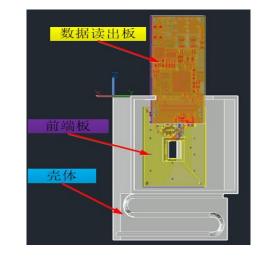
⊢ →1.	/> \V!
上 名称	参数
引出质子能量	0.8 GeV ~ 1.6 GeV
质子脉冲宽度	~80 ns
(FWHM)	
束流脉冲频率	>1000@1.6 GeV
宏脉冲频率	24 Hz
束流微脉冲	>42 Hz
微脉冲周期	409 ns
束流与散射片作用时	1.5 ms
间	
束流与散射片有效作	1.0 ms
用时间	
全東斑尺寸(可调节)	$20 \text{mm} \times 20 \text{mm}$
束流高度	1.6 m

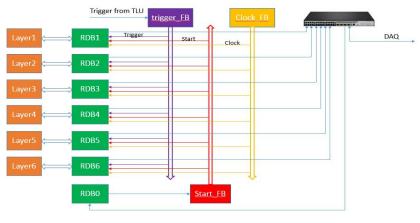
实验终端的设计



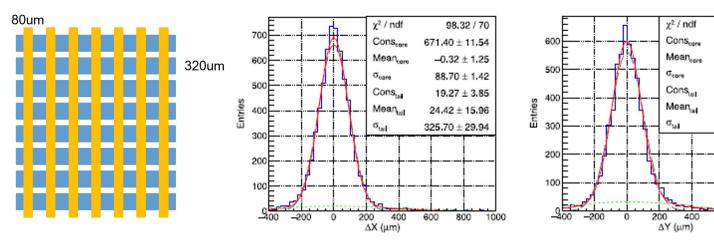

编号	设备名称	设备功能	主要参数	拟采用的技术路 线
1	高精度位置测量 系统	高精度定位测试粒 子入射径迹	位置分辨小于10微米	基于硅像素探测 器的望远镜系统
2	束斑测量系统	测量束斑剖面、均 匀性等参数	位置分辨小于150微米, 通道数大于1200路	Micromegas气体 探测器
3	触发系统	测量入射粒子时间 并给出系统触发信 号	时间分辨小于1纳秒	塑料闪烁体探测 器
4	粒子能量测量系 统	使用TOF飞行时间法 测量降能后的入射 粒子能量	时间分辨小于100皮秒	微通道板探测器 或金刚石探测器
5	质子流强测量系 统	测量终端束流流强	极弱质子束: 计数率 大于10⁵/s	塑料闪烁体探测 器

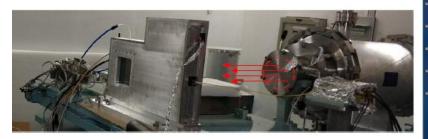
高精度的位置测量——束流望远镜方案

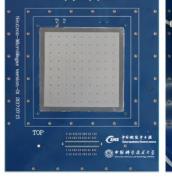

提供实时的高精度的质子位置信息。



名称	参数
硅像素芯片类型	MIMOSA28
测量面积	20mm×20mm
层数	3+3
芯片厚度	50 μm
Kapton屏蔽厚度	50 μm
像素尺寸	$20\mu m \times 20\mu m$




质子束斑测量


对质子的束流2D分布进行测量和评估。为大体积(面积)DUT标定提供参考束流坐标参数。

初步考虑的参数

- ➤ 计数率: 10 kHz
- ▶ 東斑尺度: Ø100 mm
- ▶位置分辨率: 150 um
- ▶电子学通道数: 1200
- ▶质子能量区间: 0.8~1.6GeV
- ▶探测效率: 97%@1.6GeV

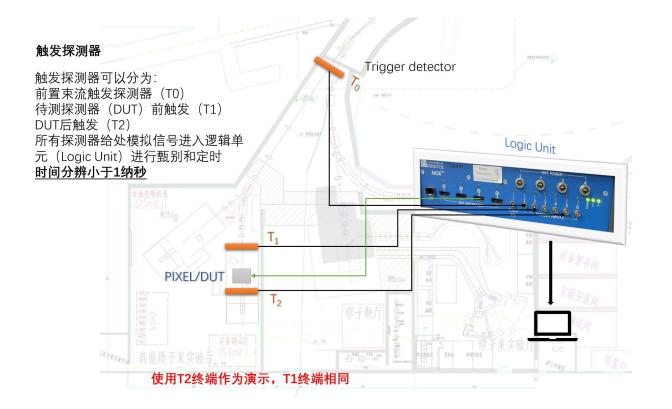
86.37 / 64

567.88 ± 11.02

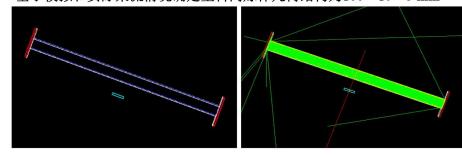
 -1.84 ± 1.45

 89.42 ± 1.85

33.11 ± 5.92


37.10 ± 11.74

 274.40 ± 18.90


800

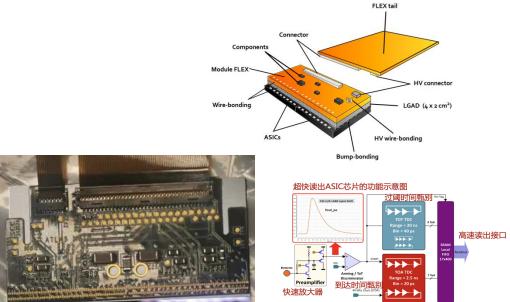
触发TO信号——塑闪(BC408&418)+光电探测器

为待测设备提供时间分辨小于1ns的实时定时T0信号。

基于模拟和实际束流情况确定塑料闪烁体几何结构为100×10×5 mm3

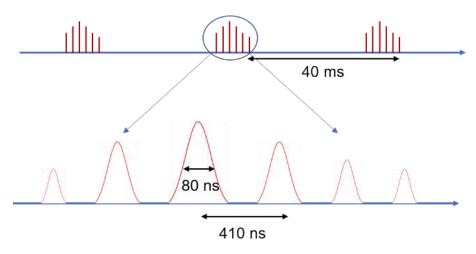
Geant4模拟探测器的几何结构和塑料闪烁体对入射电子的响应

_	体积(mm³)	光子数目	体积(mm³)	光子数目
	50×10×10	1410	100×10×5	1224
	$50\times10\times5$	1386	$70\times10\times5$	1315
	$50\times5\times5$	1360	$30\times10\times5$	1473
	$50\times5\times3$	1331	$10\times10\times5$	1596

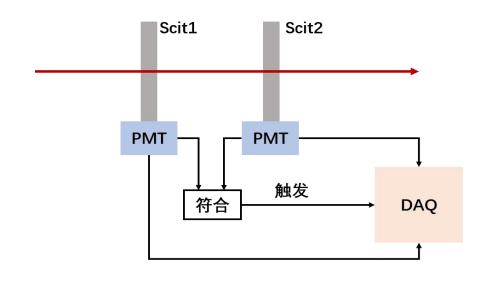


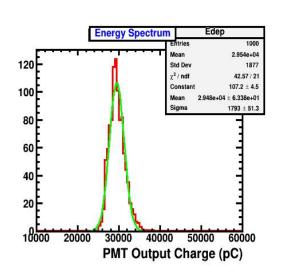
质子能量测量

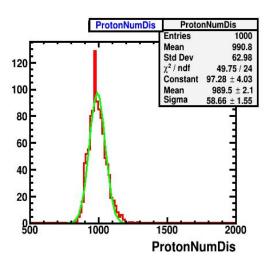
拟采用约2米的飞行时间法(TOF)测量降能后的入射粒子能量。粒子能量测量探测器拟采用低增益雪崩硅传感器(Low Gain Avalanche Detectors,LGAD)。该探测器对单质子的飞行时间测量精度可以达到30-50皮秒,探测器系统可以在所有能区均得到1%以下的能量分辨。


探测器初步设计参数

- 模块尺寸: 2cm*4cm (450通道ASIC)
- 厚度: 硅片600微米+ PCB: 500微米
- 时间分辨率: 30-50皮秒, 空间分辨率: ~1mm,
- 最大读出速率: 40Mhz
- 抗辐照能力: 能承受2.5×10¹⁵ n_{eq}/cm²的等效中子通量的 辐照
- 读出方式:
 - 数字读出,时间-数字转换(TDC)
 - 读出内容: 到达时间与过阈时间
 - 读出系统: FPGA读出
- 连接方式:
 - 数据、控制: 专用的柔性电路板(长度目前最长75cm)
- 高压: 300V-400V高压电源,最好能加到600V

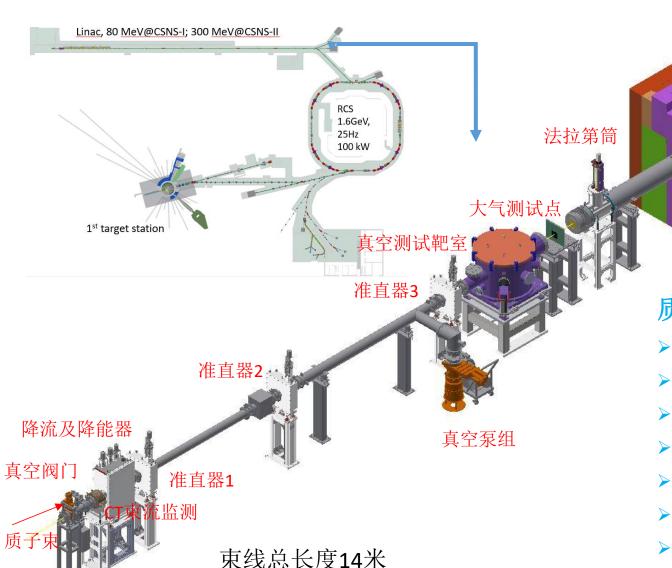

质子流强测量——塑闪+PMT读出方案


测量单粒子束的时间结构和脉冲内的粒子数目。



塑闪+PMT+波形采集方案(高效率、快响应)

- ✔ 双闪烁体探测器做符合测试,排除本底信号
- ✓ 塑闪探测效率: ~100%
- ✓ 塑闪发光时间: ~3ns
- ✓ PMT时间响应: ~ns
- ✓ 计数率大于105/s
- ✔ 采用多打拿极读出方案(实现大动态范围)
- ✔ 波形采集卡、波形数字化读出电子学



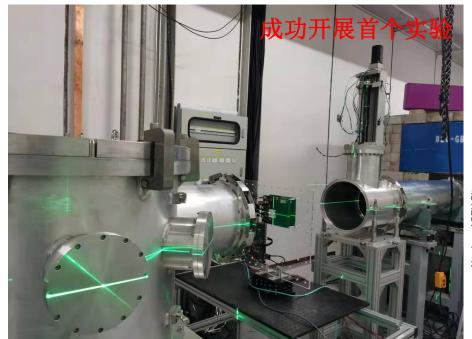
下一步的规划

- ●进一步完善设计方案并开始工程化设计和部分验证工作;
- ●开始部分硬件的搭建和实验验证;
- ●组建用户委员会并收集用户建议,优化设计方案。

欢迎大家多提宝贵建议!

CSNS伴生质子束实验平台

伴生质子束产生 负氢离子束在LINAC中知速 到各输时,与真空管中的残 余气体相互作用,少部分负 氢离子被剥离成质子,被传 输到直线末端。


质子束参数指标

废束站

- ➤ 能量范围: 10-80 MeV (能散(FWHM)<8.65% @>30MeV)
- ▶ 東斑尺寸: 10 x 10 mm² 50 x 50 mm² (连续可调,均匀性 > 95%)
- ▶ 质子注量率: 105-10¹⁰ p/cm²/s
- ▶ **流强监测:** 1. CT、法拉第筒及活化片
- **▶ 真空测试点:** 真空度<10⁻³ Pa, 空间尺寸50cmר0.8m, 测试工位5个;
- **> 大气测试点:** 远程控制样品台
- > 实验本底: <1.4E-4(中子)和<3.4E-5(伽玛) @20 x 20 mm²束斑

实验平台开放运行及实验研究

此实验使用束斑: 20mm*20mm

100 200 300 400 500 600 700 800 900

20

LHCb UT探测器专用SALT芯片单粒子效应测试 (高能所实验物理中心用户)

即将开放

伴生质子束流申请入口 https://apep.csns.ihep.ac.cn/ 每年开放时间:约5000小时

联系人: 敬罕涛(手机: 18937601342)、谭志新 联系方式: jinght@ihep.ac.cn; tanzhixin@ihep.ac.cn

现场条件

- 远程控制高低压电源;
- ▶ 高速互联网络及上下连接专线(方便开展涉密类课题);
- ▶ 远程控制实验台;
- > 实时剂量监测;

请各位老师批评指正!