

Measurements of prompt and non-prompt J/ψ production in Pb-Pb collisions at 5.02 TeV with ALICE

白晓智 中国科学技术大学

中国物理学会高能物理分会第十一届全国会员代表大会,2022.08.11,大连

- Introduction and motivation
- Results
 - Inclusive J/ψ production in pp and Pb-Pb collisions
 - Prompt and non-prompt J/ ψ nuclear modification factor R_{AA}
- Summary and outlook

J/ψ as a probe of the QGP

- The prompt J/ ψ reflects the dissociation and (re-)generation contribution in QGP
- Non-prompt J/ψ can study the beauty quark and medium interaction

J/ψ measurements with ALICE detector

$J/\psi p_T$ spectrum in pp and Pb-Pb collisions at 5.02 TeV

- First measurement of inclusive J/ ψ production at pp 5.02 TeV, p_T down to 0, new measurement consistent with ATLAS and CMS
- The statistical hadronization model describes the data at low $p_{\rm T}$, while the transport model agrees with \geq data for all $p_{\rm T}$ 08/11/22

J/ ψR_{AA} in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- > The evidence of the (re-)generation contribution mainly at the central collisions and low $p_{\rm T}$
- > The statistical hadronization model can describe the data at low $p_{\rm T}$, while the transport model agrees with data in whole measured $p_{\rm T}$ -region

Prompt and non-prompt J/ ψ cross section

- Prompt J/ ψ can be described by the NRQCD+CGC and ICEM calculations, while non-prompt J/ ψ agrees with the FONLL prediction
- ALICE results are compatible with the CMS and ATLAS measurements

- > The slight centrality dependence hints at an increasing contribution from (re-)generation towards most central collisions for prompt J/ψ
- > ALICE extends non-prompt J/ ψ measurement at the LHC down to $p_T = 1.5 \text{ GeV}/c$

- > ALICE extends the prompt and non-prompt J/ ψ measurements at the LHC down to $p_T = 1.5 \text{ GeV}/c$
- \succ The results are compatible with ATLAS at higher $p_{\rm T}$

Centrality dependence of prompt and non-prompt J/ ψ R_{AA}

- Prompt J/\u03c8 R_{AA} increases towards more central collisions, points to an increasing contribution from (re-)generation
- Non-prompt J/ψ is more suppressed in central collisions, expected from heavy quark energy loss in the medium

- > Prompt J/ ψ R_{AA} increases from semicentral to central collisions in the lowest $p_{\rm T}$ intervals
- The suppression seems stronger in central collisions compared to the semicentral at high p_T for both prompt and non-prompt J/ ψR_{AA}

- Similar trends for non-prompt J/ ψ and non-prompt D⁰ R_{AA}
- Non-prompt J/ ψ R_{AA} described by models implementing collisional and radiative energy loss for $p_T > 5$ GeV/*c*
- > Prompt J/ ψ R_{AA} agrees with the SHMc prediction at low p_T

- GEM technology replaced the old wire chamber for the TPC readout, increasing the detector's DAQ speed by a factor of 100
- Significantly improved the impact parameter resolution and the tracking efficiency. Reducing the material budget from ~1.14% to ~0.35% X₀

- > The signal-to-background ratio improved significantly by using the machine method
- Three components (prompt, non-prompt, and background) approach will be used for Run 3

Run 3 can extend non-prompt J/ ψ measurement to the very low p_T , the precision of the measurements will be significantly improved

- ▶ Prompt and non-prompt J/ ψ are measured in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV
 - Dominant contribution from (re-)generation in central collisions and low $p_{\rm T}$ for prompt J/ ψ
 - Strong suppression is observed for non-prompt J/ψ , as described by the energy loss models
- > The precision of the measurements will be improved significantly with Run3

Thanks