

2022. 大连

中国物理学会高能物理分会

学术年会

Study of the pentaquark states

肖楮文

中南大学

Collaborators: Juan Nieves, Eulogio Oset, 吴佳俊, 邹冰松

Outline

Introduction
 Formalism
 Results
 Summary

§1. Introduction

- H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu, Phys. Rept. 639 (2016) 1.
- A. Esposito, A. Pilloni and A. D. Polosa, Phys. Rept. 668 (2016) 1.
- F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B.-S. Zou, **Rev. Mod. Phys. 90** (2018) 0115004.
- S. L. Olsen, T. Skwarnicki and D. Zieminska, **Rev. Mod. Phys. 90** (2018) 0115003.
- C. Z. Yuan, Int. J. Mod. Phys. A 33,1830018 (2018).
- Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, **Prog. Part. Nucl. Phys. 107**, 237 (2019).
- N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, **Phys. Rept. 873** (2020) 1.

Pridictions

In hidden charm strangeness sector

PRL 105, 232001 (2010)

PHYSICAL REVIEW LETTERS

week ending 3 DECEMBER 2010

Prediction of Narrow N^* and Λ^* Resonances with Hidden Charm above 4 GeV

Jia-Jun Wu,^{1,2} R. Molina,^{2,3} E. Oset,^{2,3} and B. S. Zou^{1,3}

J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. Lett. 105 (2010) 232001.

J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. C 84 (2011) 015202.

H. X. Chen, L. S. Geng, W. H. Liang, E. Oset, E. Wang and J. J. Xie, **Phys. Rev. C 93** (2016) 065203.

R. Chen, J. He and X. Liu, Chin. Phys. C 41 (2017) 103105.

E. Santopinto and A. Giachino, Phys. Rev. D 96 (2017) 014014.

C. W. Shen, J. J. Wu and B. S. Zou, Phys. Rev. D 100 (2019) 056006.

CWX, J. Nieves and E. Oset, Phys. Lett. B 799 (2019) 135051.

B. Wang, L. Meng and S. L. Zhu, Phys. Rev. D 101 (2020) 034018.

Experimental findings for the Pcs state

The data cannot confirm or refute the two-peak hypothesis.

New findings for the Pcs state

§2. Formalism

• **Coupled Channel Unitary Approach**: solving Bethe-Salpeter equations, which take on-shell approximation for the loops.

$$T = V + V G T, T = [1 - V G]^{-1} V$$

$$= V + V G T, T = [1 - V G]^{-1} V$$

$$= V + P_{p_2} + P_{p_4} + \dots$$

$$T = V + V - F - T$$

where V matrix (potentials) can be evaluated from the interaction Lagrangians.

J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997) 438 E. Oset and A. Ramos, Nucl. Phys. A 635 (1998) 99 J. A. Oller and U. G. Meißner, Phys. Lett. B 500 (2001) 263

SOUTH DATE

G is a diagonal matrix with the loop functions of each channels:

$$G_{ll}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{2M_l}{(P-q)^2 - m_{l1}^2 + i\varepsilon} \frac{1}{q^2 - m_{l2}^2 + i\varepsilon}$$

The coupled channel scattering amplitudes **T matrix** satisfy the unitary :

Im
$$T_{ij} = T_{in} \sigma_{nn} T^*_{nj}$$

$$\sigma_{nn} \equiv \text{Im } G_{nn} = -\frac{q_{cm}}{8\pi\sqrt{s}}\theta(s - (m_1 + m_2)^2))$$

To search the poles of the resonances, we should extrapolate the scattering amplitudes to the second Riemann sheets:

$$G_{ll}^{II}(s) = G_{ll}^{I}(s) + \frac{i}{2\pi} \frac{M_l q_{cml}(s)}{\sqrt{s}}$$

$$_{(\ell'_{M}\ell'_{B}S')}\left\langle S'_{c\bar{c}}\mathcal{L}'; J'|H^{QCD}|S_{c\bar{c}}\mathcal{L}; J, \right\rangle_{(\ell_{M}\ell_{B}S)} = \delta_{JJ'}\delta_{S'_{c\bar{c}}}S_{c\bar{c}}}\delta_{\mathcal{L}\mathcal{L}'}\left\langle \ell'_{M}\ell'_{B}S'||H^{QCD}||\ell_{M}\ell_{B}S\right\rangle_{\mathcal{L}}$$

$$\begin{aligned} |\ell_{M} s_{M} j_{M} S; \ell_{B} s_{B} j_{B}; J \rangle &= \sum_{\mathcal{L}, S_{c\bar{c}}} [(2S_{c\bar{c}} + 1)(2\mathcal{L} + 1)(2j_{M} + 1)(2j_{B} + 1)]^{\frac{1}{2}} \\ &\times \left\{ \begin{array}{l} \ell_{M} & \ell_{B} & \mathcal{L} \\ s_{M} & s_{B} & S_{c\bar{c}} \\ j_{M} & j_{B} & J \end{array} \right\} |\mathcal{L} S_{c\bar{c}}; J \rangle_{(\ell_{M} \ell_{B} S)} \end{aligned}$$

=1/2, I=0

 $\bar{D}\Xi_c'$ $\bar{D}_s^* \Lambda_c$ $\overline{D} \Xi_c$ $\bar{D}^* \Xi_c$ $\bar{D}^* \Xi_c'$ $\bar{D}^* \Xi_c^*$ $\bar{D}_s \Lambda_c$ $\eta_c \Lambda$ $J/\psi \Lambda$ $-\frac{\hat{\mu}_{12}}{2}$ $\frac{\sqrt{3}\hat{\mu}_{12}}{2}$ $\frac{\sqrt{3}\hat{\mu}_{13}}{2}$ $\sqrt{\frac{2}{3}}\hat{\mu}_{14}$ $-\frac{\hat{\mu}_{13}}{2}$ $\frac{\hat{\mu}_{14}}{2}$ $\frac{\hat{\mu}_{14}}{2\sqrt{3}}$ $\hat{\mu}_1$ 0 $-\frac{\sqrt{2}\hat{\mu}_{14}}{2}$ $\frac{\sqrt{3}\hat{\mu}_{12}}{2}$ $\frac{\sqrt{3}\hat{\mu}_{13}}{2}$ $\frac{5\hat{\mu}_{14}}{6}$ $\frac{\hat{\mu}_{14}}{2\sqrt{3}}$ $\frac{\hat{\mu}_{12}}{2}$ $\frac{\hat{\mu}_{13}}{2}$ $\hat{\mu}_1$ 0 $-\frac{\hat{\mu}_{12}}{2}$ $\frac{\sqrt{3}\hat{\mu}_{12}}{2}$ $-\sqrt{\frac{2}{3}}\hat{\mu}_{24}$ $\frac{\hat{\mu}_{24}}{\sqrt{3}}$ $\hat{\mu}_2$ $\hat{\mu}_{23}$ 0 0 0 $\frac{\sqrt{3}\hat{\mu}_{13}}{2}$ $-\sqrt{\frac{2}{3}}\hat{\mu}_{34}$ $-\frac{\hat{\mu}_{13}}{2}$ $\frac{\hat{\mu}_{34}}{\sqrt{3}}$ $\hat{\mu}_{23}$ $\hat{\mu}_3$ 0 0 0 $-\frac{2(\hat{\lambda}-\hat{\mu}_4)}{3\sqrt{3}}$ $\frac{1}{3}\sqrt{\frac{2}{3}}(\hat{\mu}_4-\hat{\lambda})$ $\frac{\hat{\mu}_{14}}{2}$ $\frac{\hat{\mu}_{14}}{2\sqrt{3}}$ $\frac{1}{3}(2\hat{\lambda}+\hat{\mu}_4)$ $\frac{\hat{\mu}_{34}}{\sqrt{3}}$ $\frac{\hat{\mu}_{24}}{\sqrt{3}}$ 0 0 $\frac{\sqrt{2}\hat{\mu}_{24}}{3}$ $\frac{\sqrt{3}\hat{\mu}_{12}}{2}$ $\frac{2\hat{\mu}_{24}}{3}$ $\frac{\hat{\mu}_{12}}{2}$ $\frac{\hat{\mu}_{24}}{\sqrt{3}}$ 0 $\hat{\mu}_{23}$ 0 $\hat{\mu}_2$ $\frac{\sqrt{3}\hat{\mu}_{13}}{2}$ $\frac{\sqrt{2}\hat{\mu}_{34}}{2}$ $\frac{\hat{\mu}_{13}}{2}$ $\frac{2\hat{\mu}_{34}}{2}$ $\frac{\hat{\mu}_{34}}{\sqrt{3}}$ 0 0 $\hat{\mu}_{23}$ $\hat{\mu}_3$ $-\frac{2(\hat{\lambda}-\hat{\mu}_4)}{3\sqrt{3}}$ $\frac{2\hat{\mu}_{24}}{3}$ $\frac{5\hat{\mu}_{14}}{6}$ $\frac{2\hat{\mu}_{34}}{3}$ $\frac{\hat{\mu}_{14}}{2\sqrt{3}}$ $\frac{\hat{\mu}_{24}}{\sqrt{3}}$ $\frac{\hat{\mu}_{34}}{\sqrt{3}}$ $\frac{1}{9}(2\hat{\lambda}+7\hat{\mu}_4)$ $\frac{1}{9}\sqrt{2}(\hat{\lambda}-\hat{\mu}_4)$ $\frac{\sqrt{2}\hat{\mu}_{34}}{3}$ $\sqrt{\frac{2}{3}}\hat{\mu}_{14}$ $-\sqrt{\frac{2}{3}}\hat{\mu}_{24} -\sqrt{\frac{2}{3}}\hat{\mu}_{34} \frac{1}{3}\sqrt{\frac{2}{3}}(\hat{\mu}_4 - \hat{\lambda}) \frac{\sqrt{2}\hat{\mu}_{24}}{3}$ $-\frac{\sqrt{2}\hat{\mu}_{14}}{3}$ $\frac{1}{9}\sqrt{2}(\hat{\lambda}-\hat{\mu}_4)$ $\frac{1}{9}(\hat{\lambda}+8\hat{\mu}_4)$ **LECs**

$$\mathcal{L}_{VVV} = ig \langle [V_{\nu}, \partial_{\mu} V_{\nu}] V^{\mu} \rangle,$$

$$\mathcal{L}_{PPV} = -ig \langle [P, \partial_{\mu} P] V^{\mu} \rangle,$$

$$\mathcal{L}_{BBV} = g \left(\langle \bar{B} \gamma_{\mu} [V^{\mu}, B] \rangle + \langle \bar{B} \gamma_{\mu} B \rangle \langle V^{\mu} \rangle \right)$$

$$\stackrel{\bar{D}^{0}}{\longrightarrow} \stackrel{D^{-}}{\longrightarrow} \stackrel{D^{-}}{\longrightarrow} \stackrel{D^{-}}{\longrightarrow} \stackrel{\bar{D}^{0}}{\longrightarrow} \stackrel{\bar{$$

§3. Results

 $J/\psi\Lambda, \ \bar{D}^*\Xi_c, \ \bar{D}_s\Lambda_c, \ \bar{D}^*\Xi_c', \ \bar{D}\Xi_c^*, \ \bar{D}^*\Xi_c^*.$

CWX, J. Nieves and E. Oset, Phys. Rev. D 100 (2019) 014021

HQSS

• J = 1/2, I = 0 $a(\mu = 1 \,\text{GeV}) = -2.09$

Thre	s. 4099.	.58 4212.	58 4366.6	61 4254.8	0 4445.34	4477.92	4398.66	4586.66	4654.48	
	$\eta_c \Lambda$	$J/\psi\Lambda$	$\bar{D}\Xi_c$	$ar{D}_s \Lambda_c$	$\bar{D}\Xi_c'$	$\bar{D}^*\Xi_c$	$ar{D}_s^*\Lambda_c$	$\bar{D}^* \Xi_c'$	$\bar{D}^*\Xi_c^*$	
4276.59 + i7.67										
$g_i = 0$.17 - i0.03	0.29 - i0.07	2.93 + i0.08	0.76 + i0.31	0.00 + i0.01	0.01 + i0.02	0.01 + i0.04	0.01 - i0.02	0.01 - i0.03	
$ g_i $	0.17	0.30	2.93	0.82	0.01	0.02	0.05	0.02	0.03	
4429.84 + i7.92										
$g_i = 0$.29 - i0.11	0.17 - i0.07	0.00 - i0.00	0.00 - i0.00	0.15 - i0.26	$2.78 + \mathbf{i0.01}$	0.66 + i0.32	0.01 + i0.05	0.01 + i0.03	
19i	0.31	0.18	0.00	0.00	0.30	2.78	0.73	0.05	0.04	
4436.	4436.70 + i1.17									
g_i 0	.24 + i0.03	0.14 + 0.01	0.00 - i0.00	0.00 - i0.00	1.72-i0.04	0.22 - i0.31	0.06 - i0.01	0.01 - i0.04	0.01 - i0.03	
$ g_i $	0.24	0.14	0.00	0.00	1.72	0.38	0.07	0.04	0.03	
4580.	4580.96 + i2.44									
g_i 0	.12 - i0.00	0.37 - i0.04	0.02 - i0.01	0.02 - i0.01	0.03 - i0.00	0.02 - i0.02	0.03 - i0.02	1.57 - i0.17	0.00 + i0.02	
$ g_i $	0,12	0.37	0.02	0.02	0.03	0.03	0.03	1.58	0.02	
4650.86 + i2.59										
$g_i = 0$.32 - i0.05	0.19 - i0.03	0.02 - i0.01	0.03 - i0.02	0.02 - i0.00	0.01 - i0.01	0.02 - i0.01	0.01 - i0.00	1.41 - i0.23	
$ g_i $	0.32	0.19	0.03	0.04	0.02	0.02	0.02	0.02	1.43	

•
$$J = 3/2, I = 0$$

Thres	s. 4212	.58 4477.	92 4398.0	66 4586.66	4513.17	4654.48	
$J/\psi\Lambda$		$\bar{D}^* \Xi_c$	$ar{D}_s^*\Lambda_c$	$\bar{D}^* \Xi_c'$	$ar{D}\Xi_c^*$	$\bar{D}^* \Xi_c^*$	
4429.52 + i7.67							
g_i 0.3	31 - i0.10	2.77 - i0.02	0.67+i0.32	0.00 + i0.0.02	0.00 - i0.06	0.00 + i0.0.04	
$ g_i $ 0.32		2.77	0.74	0.02	0.06	0.04	
4506.9	99 + i1.03						
$g_i 0.2$	27 + i0.02	0.02 - i0.03	0.02 - i0.02	0.00 - i0.03	$1.56-\mathrm{i}0.07$	0.00 - i0.05	
$ g_i $	0.27	0.03	0.03	0.03	1.56	0.05	
4580.9	96 + i0.34						
g_i 0.2	14 - i0.01	0.01 - i0.01	0.01 - i0.01	1.54-i0.02	0.02 - i0.00	0.00 - i0.04	
$ g_i $	0.14	0.01	0.02	1.54	0.02	0.04	
4650.5	58 + i1.48						
$g_i 0.2$	29 - i0.02	0.02 - i0.01	0.03 - i0.02	0.03 - i0.01	0.03 - i0.00	1.40 - i0.13	
$ g_i $	0.29	0.03	0.03	0.03	0.03	1.41	

CWX, J. Nieves and E. Oset, Phys. Lett. B 799 (2019) 135051.

J=1	/2, I =	0	$a_{\mu}($	$\mu = 1$	GeV) =	= -1.94	1			
Chan.	$\eta_c \Lambda$	$J/\psi\Lambda$	$\bar{D}\Xi_c$	$\bar{D}_s \Lambda_c$	$\bar{D}\Xi_c'$	$\bar{D}^* \Xi_c$	$\bar{D}_s^*\Lambda_c$	$\bar{D}^* \Xi_c'$	$\bar{D}^* \Xi_c^*$	
Thres.	4099.58	4212.58	4366.61	4254.80	4445.34	4477.92	4398.66	4586.66	4654.48	
4310.5	3 + i8.23	$P_{ws}^{\Lambda}($	4338) ⁰							
$ g_i $	0.15	0.27	2.33	0.69	0.00	0.04	0.09	0.01	0.02	
Γ_i	0.57	1.18	-	13.86	_	-		-	-	
Br.	3.47%	7.16%	—	84.21%	_	-	—	_	-	
4445.1	2 + i0.19									
$ g_i $	0.10	0.06	0.00	0.00	0.72	0.08	0.04	0.01	0.01	
Γ_i	0.29	0.08	0.00	0.00	_	_	0.04	-	-	
Br.	74.74%	21.22%	0.01%	0.01%	_	-	10.62%	_	-	
4459.0	7 + i6.89	$P_{cs}(4$	4459)							
$ g_i $	0.22	0.13	0.00	0.00	0.07	2.16	0.61	0.03	0.02	
Γ_i	1.59	0.46	0.00	0.00	0.01	-	11.14	-	-	
Br.	11.57%	3.31%	0.00%	0.00%	0.70%	_	80.86%	—	-	
458	86.66?									
$ g_i $		_		-	_				-	
465	54.48?									
$ g_i $	-	_							-	
										1

•
$$J = 3/2, I = 0$$

CWX, J. J. Wu and B. S. Zou, Phys. Rev. D 103 (2021) 054016.

§4. Summary

Our results of bound states — molecular states

Hope that our predictions can be found in the future experiments!

Thanks for your attention!