

中国科学院高能物理研究所

Institute of High Energy Physics, Chinese Academy of Sciences

R&D of a novel high-granularity crystal calorimeter

Baohua Qi On behalf of CEPC Calorimeter Working Group

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

August 8-11, 2022

qibh@ihep.ac.cn

Motivations for crystal ECAL

- Background: calorimeter for future lepton colliders (e.g. CEPC, FCC-ee, ILC, CLIC...) •
 - Jet energy resolution of 3-4%@100GeV is required •
 - Particle flow approach: high-granularity calorimeter
- Particle-flow crystal ECAL
 - Homogeneous structure ٠
 - Intrinsic energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - Physics benefits
 - Energy recovery of electrons: to improve Higgs recoil mass ٠
 - Capability to trigger single photons: precision γ/π^0 reconstruction
 - Focus on low energy particle measurement ٠

Two designs of crystal ECAL

Design 1: short bars

- A natural design compatible with PFA
 - Fine segmentation in both longitudinal and transverse
 - Single-ended readout with SiPM

- Long bars: 1×1×40 cm, double-sided readout
 - Super cell module: 40×40 cm
 - Crossed arrangement in adjacent layers
 - Fine longitudinal granularity
- Save #channels and minimize dead materials
- Timing at two sides: positioning along bar

- Performance studies
 - Evaluate physics potentials with Arbor-PFA
 - Separation power, Higgs benchmarks
 - Reconstruction algorithm dedicated to new geometry design
- Detector design and hardware development
 - EM energy resolution: light yield requirements
 - Detector unit characterization: cosmic-ray and radioactive source tests
 - Response uniformity
 - Time resolution
 - SiPM characterization
 - Small-scale detector module design

Performance evaluation

- Adapted from CEPC baseline detector
- Application and optimization of Arbor-PFA

Separation power

- Reconstruction of jets: separation power of close-by particles
- Arbor-PFA: ongoing optimization
 - (a) find the shower core/axis to separate particles with a high threshold
 - (b) clustering hits with a low threshold for better energy resolution

EM shower: good separation power, similar to SiW under a high energy threshold

Side view of crystal ECAL

CEPC Software v0.1.1

Separation power

- Reconstruction of jets: separation power of close-by particles
- Arbor-PFA: ongoing optimization
 - (a) find the shower core/axis to separate particles with a high threshold
 - (b) clustering hits with a low threshold for better energy resolution

 V_i, E_i

- Hadronic shower: challenges on clustering
- Key question: matching clusters of charged particles to their tracks
- Further optimization of Arbor-PFA

CEPC Software v0.1.1

Higgs benchmarks

- Physics performance
 - Boson mass resolution (BMR) for di-jet events: ZH ($Z \rightarrow \nu\nu, H \rightarrow gg$)
 - BMR for di-photon events : ZH ($Z \rightarrow \nu\nu$, $H \rightarrow \gamma\gamma$)

BMR ($H \rightarrow \gamma \gamma$)

- Significant improvement after Arbor-PFA algorithm optimization
- Ongoing optimization and further BMR study...

CEPC Software v0.1.1

Reconstruction algorithm dedicated to new geometry design

- Detector description
 - Full barrel geometry with DD4HEP
 - 28 longitudinal layers, crossed arrangement
- Reconstruction algorithm: aims
 - Final granularity 1×1×2 cm³
 - Minimize impact from ghost hits
- Challenges
 - Pattern recognition of clusters
 - Associating charged clusters with tracks

Fangyi Guo, Weizheng Song, Shengsen Sun, Linghui Wu, Yang Zhang (IHEP)

An octave in the barrel ECAL with crossed long crystal bars

 χ^2_{12}

 χ^2_{22}

Reconstruction algorithm dedicated to new geometry design: progress

• Clustering algorithm for long crystal ECAL

- Reconstruction: application of Hough transformation
 - Local maxima of hits \rightarrow Bands in Hough space \rightarrow Cluster

Talk *Reconstruction Algorithm for Long Crystal Bar ECAL* on CEPC Joint Workshop 2022 by WeiZheng Song

2022/08/10

- Performance studies
 - Evaluate physics potentials with Arbor-PFA
 - Separation power, Higgs benchmarks
 - Reconstruction algorithm dedicated to new geometry design
- Detector design and hardware development
 - EM energy resolution: light yield requirements
 - Detector unit characterization: cosmic-ray and radioactive source tests
 - Response uniformity
 - Time resolution
 - SiPM characterization
 - Small-scale detector module design

EM energy resolution: light yield requirements

Geant4 Simulation (v10.7)

- Impact of energy threshold (in MIP) and #detected photons (in p.e./MIP)
 - Digitization: photon statistics (BGO crystal + SiPM), electronics resolution

Energy Resolution 100p.e./MIP

Light Yield vs Stochastic Term

- Moderately high light yield (#detected photons) and low threshold required
- Low energy threshold can be feasible with low crosstalk SiPMs
- >100 p.e./MIP light yield is enough for $\sim 3\%/\sqrt{E}$ energy resolution

Cosmic-ray test of long crystal bar

- 400×10×10 mm³ long BGO crystal bar, ESR wrapping
- SiPM readout at both two ends
- Energy deposition in Geant4 simulation: 9.1 MeV/MIP

• BGO crystal: high enough light yield

Energy calibration with ¹³⁷Cs radioactive source

- Experiment setup
 - 662 keV gamma form ¹³⁷Cs, 1D moveable support
 - ~5 mm spread of gamma source
 - 400×10×10 mm³ BGO crystal bar, ESR wrapping
 - $6 \times 6 \text{ mm}^2$ SiPMs with 25 μ m pixel, air coupling, double-sided readout

Study on response uniformity of a long crystal bar

Geant4 Simulation (v10.7.3)

1GeV muon

Crystal bar

Air gap

z- end

SiPN

6mm

Substrate Sensor Epoxy

ESR wrapping

z+ end

- Uniformity scan: 662 keV gamma for ¹³⁷Cs, change hit positions
- Geant4 optical simulation: a single BGO crystal bar wrapped with ESR film

Simulation: detected photon Experiment: detected photon 140 Mean Detected Photon ↓ 10% 130 100ŀ 120 DetectedPhoton sum DetectedPhoton_VaryGunPos_sum DetectedPhoton m DetectedPhoton VarvGunPos n DetectedPhoton p DetectedPhoton VarvGunPos 100 80 Measured data Geant4 Optical Simulation 90 70 ¹³⁷Cs source 662 keV gamma 80 60 70 60 200 -50 -150 -200 -150 -100-50 200 Pos / mm GunPos / mm

- Relatively low response near one side
 - surface defects, scintillation uniformity, geometry...
- Repetitive experiments show similar results
- Further studies are ongoing...

• Stronger non-uniformity effect in simulation with current parameters

Mean Detected Photon

MIP response uniformity of crystal ECAL module

Geant4 Simulation (v10.7.3)

- Simulation setup
 - 400×10×10 mm³ BGO crystal Bar
 - Crossed bar arrangement
 - 1 GeV muon: perpendicular incidence
 - Response has been parameterized (based on optical simulation)

- Responses depend on hit positions
 - Time information for positioning
- Can be calibrated with position information

Response uniformity: impact on energy resolution

Geant4 Simulation (v10.7.3)

- Impact on energy resolution
 - 1-100 GeV electron
 - 3×3 modules are used to prevent energy leakage
 - Digitization and energy calibration are implemented
 - Energy resolution = Mean/StdDeV

Energy Resolution vs Non-uniformity of Crystal Bar

Incident particles randomly hit this area of the middle module

- Severe distortion of energy resolution
 - Effect on energy distribution
 - Major contribution to constant term
- Response non-uniformity need to be calibrated
 - Goal: non-uniformity < 1% after calibration

Latest progress on time resolution study

- Zhiyu Zhao (SJTU) Waveform of a typical cosmic-ray event Cosmic-ray events with 400 mm long crystal bar . Fit the leading edge of SiPM signals 1.052e+05 / 85 Prob p0 1455 ± 0.2177 Timing method: constant fraction 33.97 ± 0.3537 1740 ± 0 $\binom{x-[0]}{1-e^{-\frac{x-[0]}{[1]}}}$. [2] Time Resolution vs. Fraction 1000 DeltT_NPE B σ_t [ns] t2-t1/[ns] 400 F Entries 8244 1762 Mean x 40F -1.713Mean y Std Dev x 564.9 Std Dev y 2.76 1.9 TimeResolution_VaryGunPos 1.8 $1.515/\sqrt{2} = 1.07$ ns 0.5 1.7 -20 0.45 1.6 -30 -40 0.35 -50 0.04 0.06 0.08 0.02 0.1 0.12 0.14 0.16 0.18 500 1000 1500 2000 2500 3000 3500 4000 Number of PE Fraction [Max] 0.3 G4 optical simulat Large #photons helps to improve time resolution
 - Limitations:
 - SiPM signal rising edge, front-end electronics
 - Scintillation properties of BGO crystal, light transmission

Expected time resolution in simulation: ~400 ps

-150

-100

GunPos / mm

Laser calibration of SiPMs

• Motivation: characterization of large dynamic range SiPMs

• DUT: Hamamatsu & NDL SiPMs, large size and small pixel pitch SiPMs are preferred

Single photon spectrums of SiPMs

• Single photon spectrums of DUTs

- Criteria for SiPMs: dynamic range, gain, price, crosstalk, capability of single photon detection...
- NDL EQR06 series with 6 μ m pixel and 3×3 mm² active area
 - High pixel density (244720 pixels), narrow pulse shape (~10 ns)

Response linearity: SiPM saturation

• Saturation study of NDL EQR06 SiPMs (preliminary results)

Туре	EQR06 11-3030D-S
Effective Pitch	6 µm
Element Number	1×1
Active Area	3.0×3.0 mm ²
Micro-cell Number	244720
Typical Breakdown Voltage (V _B)	24.5 V
Temperature Coefficient for $\mathbf{V}_{\mathbf{B}}$	23 mV / °C
Recommended Operation Voltage	$V_B + 8 V$
Peak PDE @420nm	30 %
Gain	$8.0 imes 10^4$
Dark Count Rate (DCR)	276 kHz / mm ²
Terminal Capacitance	5.1 pF / mm ²

Above parameters are measured at their recommended operation voltage and 20 °C.

- Laser test: photons arrived at the same time (within ~60 ps), recovery effect excluded
- NDL EQR06 SiPMs: larger dynamic range expected due to a short recovery time
- Ongoing work for better photon calibration

Small-scale detector module design

- Motivations: to develop crystal modules
 - Identify critical questions/issues on system level
- Key issues
 - Mechanical design: crystal fixture, tolerance, gaps
 - Electronics: front-end ASIC options
 - Temperature control and monitoring: case and sensors
 - Dynamic range of SiPMs and FEE: crucial question
- Preparations for future beam tests
 - Energy resolution, shower profiles

A5202 unit (FERS-5200)

Crystal ECAL specifications

Key Parameters	Value	Notes
MIP light yield	> 100 p.e./MIP	9.1 MeV/MIP in 1 cm BGO
Dynamic range	0.05~10 ³ MIP	About 500 keV~10 GeV
Energy threshold	15 p.e.	Feasible for 0.05 MIP signal
Timing resolution	~400 ps	Expected value from simulation
Crystal non-uniformity	< 1%	After calibration
Temperature stability	Stable at the level of 0.05 Celsius	CMS ECAL value
Gap tolerance	< 0.5 mm (?)	TBD through module development

Further issues:

- Temperature control
 - Temperature dependent properties (SiPM crystal)
 - Cooling system for Front-end electronics

- Calibration schemes
 - LED single photon calibration of SiPMs
 - Transmittance of crystal: radiation damage
 - Operation and maintenance: MIP calibration

R&D of a highly granular crystal ECAL:

- Performance studies: PFA & reconstruction algorithm
- Hardware development

- Prospects
 - Challenge on PFA: still optimizing
 - Detailed simulation studies on crystal ECAL performance
 - Address key issues of crystal ECAL through module development

Latest progress in time resolution study

Latest progress in time resolution study

- Time resolution of SiPMs with picosecond laser
- Limited by the sampling rate of the oscilloscope

