

Search for a light Higgs boson in single-photon decays of Y(1S) using Y(2S) $\rightarrow \pi^{+}\pi^{-}$ Y(1S) tagging method [Y(2S) $\rightarrow \pi^{+}\pi^{-}$ Y(1S) $\rightarrow \gamma A^{0}(\rightarrow \tau^{+}\tau^{-}/\mu^{+}\mu^{-})$]

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 2022年8月8日-11日

Motivation

Search for a light Higgs boson A⁰:

- The standard model (SM) predicted only one scalar Higgs with a mass around 120 GeV/c², which has been discovered by ATLAS [1] and CMS [2].
- However, low-mass Higgs with mass of O(10 GeV) are predicted in Next-to-Minimal Supersymmetric Standard Model (NMSSM) [3-7].
- The NMSSM contains two charged Higgs bosons, three neutral CP-even bosons, and two CPodd bosons. The lighter CP-odd Higgs, denotes as A⁰, has a mass below bb production threshold, which are suggested to be searched in Y radiative decays [3-7].
- The branching fraction of $\Upsilon(nS) \rightarrow \gamma A^0$ reaches 10⁻⁴, depending on the A⁰ mass and couplings [4].

[1] PLB 716, 1 (2012) [2] PLB 716, 30 (2012) [3] PRD 70, 034018 (2004) [4] PRL 95, 041801 (2005) [5] PRD 76, 051105 (2007) [6] PRD 77, 015013 (2008) [7] PRD 81, 075003 (2010) -2-

Motivation

The results of $\Upsilon(1S) \rightarrow \gamma A^0 (\rightarrow \tau^+ \tau^- / \mu^+ \mu^-)$ from CLEO and BaBar:

Experiment	Data sample	Channel	$ \begin{array}{l} {\cal B}^{UL} \big(\Upsilon(1S) \rightarrow \gamma A^0 \big) \times \\ {\cal B}(A^0 \rightarrow \tau^+ \tau^- / \mu^+ \mu^-) \end{array} $	A ⁰ mass range
CLEO [8]	21.5×10 ⁶ Y(1S)	$\Upsilon(1S) \rightarrow \gamma A^0$, $A^0 \rightarrow \tau^+ \tau^-$	$(1-5) \times 10^{-5}$	$2m_{ au} < M(au^+ au^-) <$ 7.5 GeV
BaBar [9]	92.8×10 ⁶ Y(2S)	$\begin{array}{l} \Upsilon(2S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S) \\ \Upsilon(1S) \rightarrow \gamma A^{0} \text{, } A^{0} \rightarrow \tau^{+}\tau^{-} \end{array}$	$(0.9 - 13) \times 10^{-5}$	$2m_\tau < M(\tau^+\tau^-) < 9.2~\text{GeV}$
CLEO [8]	21.5×10 ⁶ Y(1S)	$\Upsilon(1S) \to \gamma A^0$, $A^0 \to \mu^+ \mu^-$	(1-9)×10 ⁻⁶	0.201 < $M(\mu^+\mu^-)$ < 3.565 GeV
BaBar [10]	92.8×10 ⁶ Υ(2S) 116.8×10 ⁶ Υ(3S)	$\begin{array}{l} \Upsilon(2S,3S) \rightarrow \pi^+\pi^-\Upsilon(1S) \\ \Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+\mu^- \end{array}$	$(0.28 - 9.7) \times 10^{-6}$	0.212 < $M(\mu^+\mu^-) < 9.2~GeV$

Search for dark matter (DM):

- One type of DM, often called the weakly interacting massive particle (WIMP), is generally expected to be in the mass region ranging from O(1) MeV to O(100) TeV [11, 12].
- The decay of $\Upsilon(nS) \rightarrow \gamma H$ followed by the *H* decaying into a lepton pair such as $\tau^+\tau^-$ and $\mu^+\mu^-$ is suggested to be searched for in the B factories, where *H* is the mediator having an interaction between the WIMP and SM particles [13, 14].

[8] PRL 101, 151802 (2008) [9] PRD 88, 071102 (2013) [10] PRD 87, 031102 (2013) [11] PRL 92, 101301 (2004) [12] JHEP 09, 162 (2016) [13] JHEP 07, 050 (2019) [14] PRD 105, 035035 (2022)-3-

Datasets

Y(1S, 2S, 3S) datasets at e⁺e⁻ colliders [Front. Phys. 15 (2020) 6, 64301]:

Function	$\Upsilon(1S)$		$\Upsilon(2S)$		$\Upsilon(3S)$	
Experiment	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}
CLEO	1.2	21	1.2	10	1.2	5
BaBar	-	-	14	99	30	122
Belle	6	102	25	158	3	12

In this analysis, we search for $A^0(\rightarrow \tau^+ \tau^- / \mu^+ \mu^-)$ in $\Upsilon(1S)$ radiative decays using $\Upsilon(2S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$ tagging method:

- To suppress continuum and ISR backgrounds
- To increase trigger efficiency

Selection criteria

In $A^0 \rightarrow \tau^+ \tau^-$, to suppress backgrounds:

- $\tau\tau \rightarrow ee$, $\mu\mu$, $e\mu$, $\mu\pi$, $e\pi$
- The number of charged tracks $N_{trk} == 4$.
- The missing energy > 2.0 GeV, and missing polar angle within [30, 150] degrees
- We combine the signal photon with any other photon and then reject both photons of a pair whose π^0 likelihood is larger than 0.3 [PRL 93, 061803 (2004)].
- $\cos(\gamma \pi) < 0.4$ to suppress $\rho \rightarrow \pi \pi^0$
- $\cos(\gamma e) < 0.8$ and $\cos(\gamma \mu) < 0.8$ to suppress FSR and $\Upsilon(1S) \rightarrow \mu^+ \mu^-(\gamma)/e^+e^-(\gamma)$ backgrounds

In $A^0 \rightarrow \mu^+ \mu^-$, to suppress backgrounds:

- The number of charged tracks $N_{trk} == 4$.
- Four C constraint fit is applied for $\pi^+\pi^-\gamma\mu^+\mu^-$ final state and $\chi^2 < 50$.

 $\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S)$

 $\Upsilon(1S) \rightarrow \gamma A^0 (\rightarrow \tau^+ \tau^- / \mu^+ \mu^-)$

The $E^*(\gamma)$ and $M(\mu^+\mu^-)$ distributions in data

For $A^0 \rightarrow \tau^+ \tau^-$, we identify A^0 signal using the photon energy in Y(1S) rest frame: For $A^0 \rightarrow \mu^+ \mu^-$, we identify A^0 signal using the invariant mass of di-muon. $E^*(\gamma) = \frac{m^2(\Upsilon(1S)) - M^2(\tau^+ \tau^-)}{2m(\Upsilon(1S))}$

- No significant signals are seen.
- The dominant backgrounds come from $\Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S)[\to \ell^+\ell^-(\gamma)]$ ($\ell = e, \mu, \text{ or } \tau$).

Fitting method

- A series of two-dimensional (2D) unbinned extended maximum-likelihood fits to the $E^*(\gamma)/M(\mu^+\mu^-)$ and $M_{rec}(\pi^+\pi^-)$ distributions are performed.
- Parameterization of signal

We fit $E^*(\gamma)$ and $M(\mu^+\mu^-)$ distributions by modelling A⁰ with the CB function and double Gaussian function. The Y(1S) signal shape is described by the BW function convolved with a Gaussian function. The values of signal parameters are fixed according to signal MC simulations.

• Parameterization of background

The background shapes are described by a polynomial function. All parameters are float in the fits. We choose the order of the polynomial to minimize the Akaike information test (AIC) [Statistics and Probability Letters 33, 201 (1997)].

• Fitting step

About the half of photon resolution [724 points for $A^0 \rightarrow \tau^+ \tau^-$ and 2671 for $A^0 \rightarrow \mu^+ \mu^-$]

• Fitting range

Cover at least $\pm 10\sigma$ region to reduce the background fluctuation

 $\begin{array}{l} E^*(\gamma) \text{ and } M(\mu^+\mu^-) \text{ resolutions: } 55 \rightarrow 5 \text{ MeV/c}^2 \text{ from } \tau^+\tau^- \text{ mass threshold to } 9.2 \text{ GeV/c}^2; 1.4 \rightarrow 10 \text{ MeV/c}^2 \text{ from } \mu^+\mu^- \text{ threshold to } 9.2 \text{ GeV} \\ \mu^+\mu^- \text{ threshold to } 9.2 \text{ GeV} \\ \hline \text{Efficiency: } 2.1\% \rightarrow 0.7\% \text{ for } A^0 \rightarrow \tau^+\tau^- \text{ and } 4.7\% \rightarrow 0.6\% \text{ for } A^0 \rightarrow \mu^+\mu^- \text{ with the increased } A^0 \text{ mass} \end{array}$

Fitted results for $A^0 \to \tau^+ \tau^-$

The fitted result corresponding to the maximum local significance:

- The signal yield is 116 ± 33 with a statistical significance of 3.5σ when m(A⁰) = 9.2 GeV/c².
- The global significance is obtained to be 2.2σ with look-elsewhere-effect included within 0.15 < E^{*}(γ) < 0.4 GeV.

-8-

Fitted results for $A^0 \rightarrow \mu^+ \mu^-$

The fitted result corresponding to the maximum local significance:

- The signal yield is 23 ± 8 with a statistical significance of 3.0σ when m(A⁰) = 8.51 GeV/c².
- The global significance is obtained to be 2.0σ with look-elsewhere-effect included within 8.3 < M(μ⁺μ⁻) < 8.7 GeV/c².

-9-

Results

$$\mathcal{B}^{\mathrm{UL}}[\Upsilon(1S) \to \gamma A^0] \mathcal{B}(A^0 \to \tau^+ \tau^- / \mu^+ \mu^-) = \frac{N^{\mathrm{UL}}}{N_{\Upsilon(2S)}^{\mathrm{total}} \times \varepsilon}$$

$$\frac{\mathcal{B}[\Upsilon(1S) \to \gamma A^0]}{\mathcal{B}[\Upsilon(1S) \to \ell^+ \ell^-]} = \frac{f_{\Upsilon(1S)}^2}{\sqrt{2\pi\alpha}} \left(1 - \frac{m_{A^0}^2}{m_{\Upsilon(1S)}^2}\right)$$

- f_{Y(1S)} is the Yukawa coupling [PRL 39, 1304 (1977), PLB 175, 223 (1986), Mod. Phys. Lett. A 22, 1373 (2007).
- $B_1 = \mathcal{B}(\Upsilon(1S) \to \gamma A^0), B_2 = \mathcal{B}(A^0 \to \tau^+ \tau^-), \text{ and } B_3 = \mathcal{B}(A^0 \to \mu^+ \mu^-)$

Results

Blue curve: our results at Belle Red line: BaBar results [PRD 88, 071102 (2013), PRD 87, 031102 (2013)]

Phys. Rev. Lett. 128, 081804 (2022)

- For $\Upsilon(1S) \rightarrow \gamma A^0 (\rightarrow \tau^+ \tau^-)$: an approximately twofold improvement on the current world best upper limits.
- For $A^0 \rightarrow \mu^+ \mu^-$: at the same level as the world average limits.

The mixing angle ($\sin\theta_{A^0}$)

Phys. Rev. Lett. 128, 081804 (2022)

$$\frac{\mathcal{B}[\Upsilon(1S) \to \gamma A^0] \mathcal{B}(A^0 \to \text{hadrons})}{\mathcal{B}[\Upsilon(1S) \to \ell^+ \ell^-]}$$
$$= \sin^2 \theta_{A^0} \frac{G_F m_b^2}{\sqrt{2\pi\alpha}} \sqrt{\left(1 - \frac{m_{A^0}^2}{m_{\Upsilon(1S)}^2}\right)}.$$

- When the mass of A^0 is smaller than $\tau^+\tau^$ threshold, upper limits from $A^0 \rightarrow \mu^+\mu^-$ are used to calculate the sin θ_{A^0} ; on the contrary, upper limits from $A^0 \rightarrow \tau^+\tau^-$ are used.
- The ratios of $\mathcal{B}(A^0 \to \mu^+ \mu^-)/\mathcal{B}(A^0 \to hadrons)$ and $\mathcal{B}(A^0 \to \tau^+ \tau^-)/\mathcal{B}(A^0 \to hadrons)$ are changed from 0.08 to 0.28 and 0.7 to 1.0 [PRD 99, 015018].

Summary

- We have searched for the light CP-odd Higgs boson in $\Upsilon(1S) \rightarrow \gamma A^0 (\rightarrow \tau^+ \tau^- / \mu^+ \mu^-)$ with $\Upsilon(2S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$ tagging method using the largest data sample of $\Upsilon(2S)$ at Belle.
- We set the upper limits at 90% C.L. on the product branching fractions for $\Upsilon(1S) \rightarrow \gamma A^0$ and $A^0 \rightarrow \tau^+ \tau^-$ varying from 3.8×10^{-6} to 1.5×10^{-4} . Our results represent an approximately twofold improvement on current world best upper limits for the $\Upsilon(1S) \rightarrow \gamma A^0 (\rightarrow \tau^+ \tau^-)$ production.
- For $A^0 \rightarrow \mu^+\mu^-$, the upper limits on the product branching fractions for $\Upsilon(1S) \rightarrow \gamma A^0$ and $A^0 \rightarrow \mu^+\mu^-$ are basically at the same level as the world average limits, and vary from 3.1×10^{-7} to 1.6×10^{-5} .
- The upper limits at 90% C.L. on the Yukawa coupling $f_{Y(1S)}$ and mixing angle $sin\theta_{A^0}$ are also given. For the latter, various processes from different experiments are compared to it.

Thanks for your attention!