Origin of Neutrino Mass on Convex Cone of Positivity

黎栩 高能物理研究所

十一届高能物理分会--中微子、天体粒子物理学和宇宙学分 会场--八月十日

报告基于与周顺研究员合作的文章: arXiv: 2202.12907

Motivation

- ● 非零中微子质量 → $O^{(5)} = L \tilde{H} \tilde{H}^T L^c$

 大气中微子,太阳中微子

 ,反应堆中微子的振荡...
- 。 SM 不是一个完整理论而是一个有效理论

Weinberg算符的树图完成: type-I seesaw, type-II seesaw, type-III seesaw,... [P. Minkowski,PLB(1977)] [W. Konetschny and W. Kummer, PLB(1977)] [R. Foot, et al, ZPC 44(1989)]

- 新物理 (UV) 非常有可能耦合到 L 和 H 二重态
- 几种Seesaws 模型在五维中是不可区分的 对低能可观测量的模型依赖的预测出现在更高的维度中...

目标: 使用模型无关的方法在更高维的空间来对seesaw模型进行区分

▶凭借SMEFT的框架,近年发展起来的正定性约束的几何方法将 会有帮助

SMEFT, 正定性和锥

。 SMEFT 框架: 通过积掉重自由度, 用更高维的算符来描述"紫外完成"的红外行为,

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \frac{C_i^{(5)}O_i^{(5)}}{\Lambda} + \sum_i \frac{C_i^{(6)}O_i^{(6)}}{\Lambda^2} + \sum_i \frac{C_i^{(7)}O_i^{(7)}}{\Lambda^2} + \sum_i \frac{C_i^{(8)}O_i^{(8)}}{\Lambda^4} + \cdots$$

- 正定结构:利用量子场论的基本原理,如因果性, 幺正性, 洛伦兹对称性的等 -> 获得对 Wilson系数的约束
 - 2对2振幅: $\mathcal{M}_{2\to 2}(s,t) = c_0 + c_2 s^2 + c_{2,1} s^2 t + \cdots c_{n,m} s^n t^m$
 - ◎ C2 > O; 或者在SMEFT中: C⁽⁸⁾ > O [A. Adams et al., JHEP 06]
 - 。对于更高s依赖性的约束可见:

近期发展: [S. Ghosh et al., 2204.07617] [L.-Y. Chiang et al., 2204.07140] [S. D. Bakshi et al., 2205.03301] [D. Chowdhury et al., 2205.13762] [G. N. Remmen, N. L. Rodd, 2206.13524]

● 几何观点:紫外态作为更高维算符的树图完成,在凸锥中是可分辨的 [C.Zhang and S.-Y. Zhou, PRL(2020)]

主公式

凸锥

两个重点:
$$M^{ijkl} = \frac{1}{2\pi} \int_{(\epsilon\Lambda)^2}^{\infty} \frac{d\mu}{\mu^3} \sum_{X} \left[\mathcal{M}_{ij \to X} \ \mathcal{M}^*_{kl \to X} + (j \leftrightarrow l) \right] \xrightarrow{[C. Zhang and S.-Y. Zhouse and$$

 M^{ijkl} 是 $\mathcal{M}_{ij \to X} \mathcal{M}^*_{kl \to X} + (j \leftrightarrow l)$ 的正线性组合

1. M^{ijkl} 处于凸锥中

锥内的任何矢量总是能被写成E_i的正线性组合

$$ec{x}: \quad ec{x} = \sum_i w_i ec{E_i} \, \left(w_i \ge 0
ight)$$

2. 当 X 属于不可约表示时,Mijkl 可以成为棱

$$\mathbf{r}_i \otimes \mathbf{r}_j = \sum_{lpha} C^{i,j}_{\mathbf{r},lpha} \mathbf{r}$$

E₁ E₂ (Edge) $f(\vec{x}) = \operatorname{cone}\left(\left\{\vec{E}_i\right\}\right)$

$$M^{ijkl} = \frac{1}{2\pi} \int_{(\epsilon\Lambda)^2}^{\infty} \frac{d\mu}{\mu^3} \sum_{X} |\langle X|\mathcal{M}|\mathbf{r}\rangle|^2 \mathcal{G}_{\mathbf{r}}^{ijkl}$$

生成元:

rdan (CG)系数.

 $\mathcal{G}_{\mathbf{r}}^{ijkl} \equiv \overline{\Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l)}$

由生成元构造的锥 $\mathcal{G}_{\mathbf{r}}^{ijkl} \equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l)$

高维算符的树图完成

UV完成和锥

[L.-F. Li, PRD(1980)] [E. Ma, PRL(1998)]

• *LLHH*:

$$\begin{split} \mathcal{O}_1 &= (\bar{L}\gamma_\mu \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger D^\nu H \right), \\ \mathcal{O}_2 &= (\bar{L}\gamma_\mu \sigma^I \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger \sigma^I D^\nu H \right) \;; \end{split}$$

• LLLL:

 $\begin{aligned} \mathcal{O}_3 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} L \right), \\ \mathcal{O}_4 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} \sigma^I L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} \sigma^I L \right) \;; \end{aligned}$

• *HHHH*:

$$\begin{split} \mathcal{O}_5 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\nu} H^{\dagger} D^{\mu} H \right), \\ \mathcal{O}_6 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\mu} H^{\dagger} D^{\nu} H \right), \\ \mathcal{O}_7 &= \left(D_{\mu} H^{\dagger} D^{\mu} H \right) \left(D_{\nu} H^{\dagger} D^{\nu} H \right) \,. \end{split}$$

L,H 被分配到不可约表示2: 则 X 可被分配到1 或 3

CG 系数:

$$C^{ab}_{\mathbf{1},c} = \epsilon^{ab} , \quad C^{ab}_{\mathbf{3},c} = \left(\epsilon\sigma^{I}\right)^{ab} ;$$

$$\bar{C}^{ab}_{\mathbf{1},c} = \delta^{a}_{b} , \quad \bar{C}^{ab}_{\mathbf{3},c} = \left(\sigma^{I}\right)^{a}_{b} ,$$

X is Boson, $i, j = \mathbf{2}, \mathbf{r} = \mathbf{1} \text{ or } \mathbf{3}$

		H_b	L_b	H_b^\dagger	$ar{L}_b$
	H_a	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$
$\mathcal{M}_{ij ightarrow {f r}} =$	L_a	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$x ar{C}^{ab}_{\mathbf{1/3},c}$
	H_a^\dagger	$\pm \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$
	\bar{L}_a	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ix \bar{C}^{ab}_{1/3,c}$	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$

x是HH和LL之间耦合的相对大小

得到生成元!

$$\begin{split} \mathcal{G}_{\mathbf{r}}^{ijkl} &\equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l) \\ &= \mathcal{M}_{ij \rightarrow \mathbf{r}} \ \mathcal{M}_{kl \rightarrow \mathbf{r}}^* + \mathcal{M}_{i\bar{l} \rightarrow \mathbf{r}} \ \mathcal{M}_{k\bar{j} \rightarrow \mathbf{r}}^* \end{split}$$

• *LLHH*:

$$\begin{split} \mathcal{O}_1 &= (\bar{L}\gamma_\mu \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger D^\nu H \right), \\ \mathcal{O}_2 &= (\bar{L}\gamma_\mu \sigma^I \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger \sigma^I D^\nu H \right) \;; \end{split}$$

• LLLL:

 $\begin{aligned} \mathcal{O}_3 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} L \right), \\ \mathcal{O}_4 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} \sigma^I L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} \sigma^I L \right) \;; \end{aligned}$

• *HHHH*:

$$\begin{split} \mathcal{O}_5 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\nu} H^{\dagger} D^{\mu} H \right), \\ \mathcal{O}_6 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\mu} H^{\dagger} D^{\nu} H \right), \\ \mathcal{O}_7 &= \left(D_{\mu} H^{\dagger} D^{\mu} H \right) \left(D_{\nu} H^{\dagger} D^{\nu} H \right) \,. \end{split}$$

L,H 被分配到不可约表示2: 则 X 可被分配到1 或 3

CG 系数:

$$C^{ab}_{\mathbf{1},c} = \epsilon^{ab} , \quad C^{ab}_{\mathbf{3},c} = \left(\epsilon\sigma^{I}\right)^{ab} ;$$

$$\bar{C}^{ab}_{\mathbf{1},c} = \delta^{a}_{b} , \quad \bar{C}^{ab}_{\mathbf{3},c} = \left(\sigma^{I}\right)^{a}_{b} ,$$

X is Boson, $i, j = 2, \overline{2}, r = 1$ or 3

		H_b	L_b	H_b^\dagger	$ar{L}_b$
	H_a	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$
$\mathcal{M}_{ii ightarrow r} =$	L_a	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$x \bar{C}^{ab}_{\mathbf{1/3},c}$
uj→r	H_a^\dagger	$\pm \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$
	\bar{L}_a	$ar{C}^{ab}_{\mathbf{1/3},c}$	$\mathrm{i}x \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$

x是HH和LL之间耦合的相对大小

得到生成元!

$$\begin{split} \mathcal{G}_{\mathbf{r}}^{ijkl} &\equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l) \\ &= \mathcal{M}_{ij \rightarrow \mathbf{r}} \ \mathcal{M}_{kl \rightarrow \mathbf{r}}^* + \mathcal{M}_{i\bar{l} \rightarrow \mathbf{r}} \ \mathcal{M}_{k\bar{j} \rightarrow \mathbf{r}}^* \end{split}$$

• *LLHH*:

$$\begin{split} \mathcal{O}_1 &= (\bar{L}\gamma_\mu \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger D^\nu H \right), \\ \mathcal{O}_2 &= (\bar{L}\gamma_\mu \sigma^I \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger \sigma^I D^\nu H \right) \;; \end{split}$$

• LLLL:

 $\begin{aligned} \mathcal{O}_3 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} L \right), \\ \mathcal{O}_4 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} \sigma^I L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} \sigma^I L \right) \;; \end{aligned}$

• *HHHH*:

$$\begin{split} \mathcal{O}_5 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\nu} H^{\dagger} D^{\mu} H \right), \\ \mathcal{O}_6 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\mu} H^{\dagger} D^{\nu} H \right), \\ \mathcal{O}_7 &= \left(D_{\mu} H^{\dagger} D^{\mu} H \right) \left(D_{\nu} H^{\dagger} D^{\nu} H \right) \,. \end{split}$$

L,H 被分配到不可约表示2: 则 X 可被分配到1 或 3

CG 系数:

$$C^{ab}_{\mathbf{1},c} = \epsilon^{ab} , \quad C^{ab}_{\mathbf{3},c} = \left(\epsilon\sigma^{I}\right)^{ab} ;$$

$$\bar{C}^{ab}_{\mathbf{1},c} = \delta^{a}_{b} , \quad \bar{C}^{ab}_{\mathbf{3},c} = \left(\sigma^{I}\right)^{a}_{b} ,$$

X is Fermion, $i, j = \mathbf{2}, \mathbf{r} = \mathbf{1}$ or $\mathbf{3}$

		H_b	L_b	H_b^\dagger	$ar{L}_b$
$\mathcal{M}_{ij ightarrow {f r}} =$	H_a	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$
	L_a	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$x \bar{C}^{ab}_{\mathbf{1/3},c}$
	H_a^\dagger	$\pm \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$
	\bar{L}_a	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ix \bar{C}^{ab}_{1/3,c}$	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$

x是HH和LL之间耦合的相对大小

得到生成元!

$$\begin{split} \mathcal{G}_{\mathbf{r}}^{ijkl} &\equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l) \\ &= \mathcal{M}_{ij \rightarrow \mathbf{r}} \ \mathcal{M}_{kl \rightarrow \mathbf{r}}^* + \mathcal{M}_{i\bar{l} \rightarrow \mathbf{r}} \ \mathcal{M}_{k\bar{j} \rightarrow \mathbf{r}}^* \end{split}$$

• *LLHH*:

$$\begin{split} \mathcal{O}_1 &= (\bar{L}\gamma_\mu \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger D^\nu H \right), \\ \mathcal{O}_2 &= (\bar{L}\gamma_\mu \sigma^I \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger \sigma^I D^\nu H \right) \;; \end{split}$$

• LLLL:

 $\begin{aligned} \mathcal{O}_3 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} L \right), \\ \mathcal{O}_4 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} \sigma^I L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} \sigma^I L \right) \;; \end{aligned}$

• *HHHH*:

$$\begin{split} \mathcal{O}_5 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\nu} H^{\dagger} D^{\mu} H \right), \\ \mathcal{O}_6 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\mu} H^{\dagger} D^{\nu} H \right), \\ \mathcal{O}_7 &= \left(D_{\mu} H^{\dagger} D^{\mu} H \right) \left(D_{\nu} H^{\dagger} D^{\nu} H \right) \,. \end{split}$$

L,H 被分配到不可约表示2: 则 X 可被分配到1 或 3

CG 系数:

$$C_{\mathbf{1},c}^{ab} = \epsilon^{ab} , \quad C_{\mathbf{3},c}^{ab} = \left(\epsilon\sigma^{I}\right)^{ab} ;$$

$$\bar{C}_{\mathbf{1},c}^{ab} = \delta_{b}^{a} , \quad \bar{C}_{\mathbf{3},c}^{ab} = \left(\sigma^{I}\right)_{b}^{a} ,$$

X is Fermion, $i, j = 2, \overline{2}, r = 1 \text{ or } 3$

		H_b	L_b	H_b^\dagger	$ar{L}_b$
$\mathcal{M}_{ij ightarrow {f r}} =$	H_a	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$
	L_a	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$x \bar{C}^{ab}_{\mathbf{1/3},c}$
	H_a^\dagger	$\pm \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$
	\bar{L}_a	$ar{C}^{ab}_{\mathbf{1/3},c}$	$\mathrm{i}x \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$

x是HH和LL之间耦合的相对大小

得到生成元!

$$\begin{split} \mathcal{G}_{\mathbf{r}}^{ijkl} &\equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l) \\ &= \mathcal{M}_{ij \rightarrow \mathbf{r}} \ \mathcal{M}_{kl \rightarrow \mathbf{r}}^* + \mathcal{M}_{i\bar{l} \rightarrow \mathbf{r}} \ \mathcal{M}_{k\bar{j} \rightarrow \mathbf{r}}^* \end{split}$$

八维的树图紫外完成

UV State	Spin	${ m SU(2)_L}\otimes { m U(1)_Y}$	Interaction	Seesaw	Extremal Ray	$ec{c}$
E	1/2	1_{-1}	$gar{E}\left(H^{\dagger}L ight)$		1	$rac{1}{2}(-1,-1,0,0,0,0,0)$
Σ_1	1/2	${f 3}_{-1}$	$g ar{\Sigma}_1^I \left(H^\dagger \sigma^I L ight)$		×	${\displaystyle {{-1\over 2}(-3,1,0,0,0,0,0)}}$
N	1/2	1_{0}	$gar{N}\left(H^{\mathrm{T}}\epsilon L ight)$	Type-I	1	${f {1\over 2}}(-1,1,0,0,0,0,0)$
Σ	1/2	3_0	$g ar{\Sigma}^{I} \left(H^{ ext{T}} \epsilon \sigma^{I} L ight)$	Type-III	×	$rac{1}{2}(-3,-1,0,0,0,0,0)$
${\mathcal B}_1$	1	1_1	$g\mathcal{B}_{1}^{\mu}\left[(H^{\dagger}\epsilon\mathrm{i}\overleftrightarrow{D_{\mu}}H^{*})+x(\bar{L^{\mathrm{c}}}\epsilon\mathrm{i}\overleftrightarrow{D_{\mu}}L) ight]$		×	${1\over 2}({\stackrel{-}{0}},0,x^2,-x^2,16,0,-16)$
Ξ_1	0	3_1	$g \Xi_1^I \left[M(H^{\dagger} \epsilon \sigma^I H^*) + x(\bar{L^c} \epsilon \sigma^I L) \right]$	Type-II	×	$\frac{1}{2}\left(0,0,-3x^2,-x^2,0,16,0 ight)$
S	0	$1_{0\mathrm{S}}$	$gM\mathcal{S}\left(H^{\dagger}H ight)$		/	2 2(0, 0, 0, 0, 0, 0, 1)
B	1	$1_{0\mathrm{A}}$	$g \mathcal{B}^{\mu} \left[H^{\dagger} \mathrm{i} \overleftrightarrow{D_{ u}} H + x (\bar{L} \gamma_{\mu} L) ight]$		×	$rac{1}{2}\left(0,0,-x^2,0,-4,4,0 ight)$
Ξ	0	${f 3}_{0{ m S}}$	$gM\Xi^{I}(H^{\dagger}\sigma^{I}H)$		×	2(0,0,0,0,2,0,-1)
W	1	$3_{0\mathrm{A}}$	$g\mathcal{W}^{I\mu}\left[(H^{\dagger}\sigma^{I}\mathrm{i}\overleftrightarrow{D_{\mu}}H)+x(\bar{L}\gamma_{\mu}\sigma^{I}L)\right]$		×	$rac{1}{2}\left(0,0,0,-x^2,4,4,-8 ight)$

三种seesaws模型作为紫外完成的子集出现

八维的树图紫外完成

UV State	Spin	${ m SU}(2)_{ m L}\otimes { m U}(1)_{ m Y}$	Interaction	Seesaw	Extremal Ray	$ec{c}$
E	1/2	1 -1	$gar{E}\left(H^{\dagger}L ight)$		/	$rac{1}{2}(-1,-1,0,0,0,0,0)$
Σ_1	1/2	3_{-1}	$gar{\Sigma}_{1}^{I}\left(H^{\dagger}\sigma^{I}L ight)$		× 费米子	$-\frac{1}{2}(-3,1,0,0,0,0,0)$
N	1/2	1_{0}	$gar{N}\left(H^{ ext{T}}\epsilon L ight)$	Type-I	1	$rac{1}{2}(-1,1,0,0,0,0,0)$
Σ	1/2	3_0	$gar{\Sigma}^{I}\left(H^{ ext{T}}\epsilon\sigma^{I}L ight)$	Type-III	×	$\frac{1}{2}(-3,-1,0,0,0,0,0)$
${\mathcal B}_1$	1	1_1	$g {\cal B}^{\mu}_1 \left[(H^\dagger \epsilon { m i} \overleftrightarrow{D_{\mu}} H^*) + x (ar{L^{ m c}} \epsilon { m i} \overleftrightarrow{D_{\mu}} L) ight]$		\checkmark $\frac{1}{2}$	$(0, 0, x^2, -x^2, 16, 0, -16)$
Ξ_1	0	3_1	$g\Xi_1^I \left[M(H^{\dagger}\epsilon\sigma^I H^*) + x(\bar{L^c}\epsilon\sigma^I L) \right]$	Type-II	\checkmark $\frac{f}{2}$	$ig(0,0,-3x^2,-x^2,0,16,0ig)$
S	0	$1_{0\mathrm{S}}$	$gM\mathcal{S}\left(H^{\dagger}H ight)$		/	2(0,0,0,0,0,0,1)
B	1	$1_{0\mathrm{A}}$	$g \mathcal{B}^{\mu} \left[H^{\dagger} \mathrm{i} \overleftrightarrow{D_{ u}} H + x (\bar{L} \gamma_{\mu} L) ight]$		×	$rac{1}{2}\left(0,0,-x^2,0,-4,4,0 ight)$
Ξ	0	${f 3}_{0{ m S}}$	$gM\Xi^{I}(H^{\dagger}\sigma^{I}H)$		×	22(0,0,0,0,2,0,-1)
W	1	${f 3}_{0{ m A}}$	$g\mathcal{W}^{I\mu}\left[(H^{\dagger}\sigma^{I}\mathrm{i}\overleftrightarrow{D_{\mu}}H)+x(\bar{L}\gamma_{\mu}\sigma^{I}L)\right]$		×	$rac{1}{2}\left(0,0,0,-x^2,4,4,-8 ight)$
						现在 现

玻色子类型和费米子类型的紫外态分别处于七维空间中两个不同的子空间

锥的子空间截面

紫外态是费米子

紫外态是玻色子

$$\begin{split} \mathcal{O}_1 &= (\bar{L} \gamma_\mu \mathrm{i} \overleftrightarrow{D_\nu} L) \left(D^\mu H^\dagger D^\nu H \right), \\ \mathcal{O}_2 &= (\bar{L} \gamma_\mu \sigma^I \mathrm{i} \overleftrightarrow{D_\nu} L) \left(D^\mu H^\dagger \sigma^I D^\nu H \right) \end{split}$$

$$(x, y, z) = rac{A(C_i)}{C_3 + 2C_4 - 2C_5 - 3C_6 - C_7}$$

= $(-0.7C_3 + 0.69C_4 + 0.11C_5 + 0.13C_6 + 0.057C_7, 0.031C_3)$

 $+ 0.85C_5 - 0.5C_6 - 0.16C_7, -0.019C_3 + 0.31C_6 - 0.95C_7)$

 $A(C_i)$

凸优化

紫外态是费米子

反向提取紫外态能标的下限: [C. Zhang, 2112.11665]

$$\vec{C}(\lambda) \equiv \vec{C}_0 - \lambda \vec{c_i} = \sum_{j \neq i} \omega_j \vec{c_j} + (\omega_i - \lambda) \vec{c_i}$$

凸优化:

 $\begin{array}{lll} \text{maximize} & \lambda \\ \text{subject to} & \vec{C} - \lambda \vec{c_i} \in \mathcal{C} \\ & (\vec{C} - \vec{C_0}) \cdot A \cdot (\vec{C} - \vec{C_0}) \leq \Delta \end{array}$

凸优化

UV states are Fermions

反向提取紫外态能标的下限: [C. Zhang, 2112.11665]

$$\vec{C}(\lambda) \equiv \vec{C}_0 - \lambda \vec{c_i} = \sum_{j \neq i} \omega_j \vec{c_j} + (\omega_i - \lambda) \vec{c_i}$$

凸优化:

maximize	λ
subject to	$ec{C} - \lambda ec{c_i} \subset \mathcal{C}$
	$(ec{C}-ec{C_0})\cdot A\cdot (ec{C}-ec{C_0})\leq \Delta$

$ec{C}_0$	E	Σ_1	N	Σ
(-1/2, 1/2)	∞	∞	≥ 1.0	∞
(-3/2, 0)	≥ 0.9	≥ 1.07	≥ 0.9	≥ 1.07
$(-3/2,0)$ with $\Delta = 0.1$	≥ 0.85	≥ 1.0	≥ 0.85	≥ 1.0
$(0,0)$ with $\Delta = 0.1$	≥ 1.22	≥ 1.5	≥ 1.22	≥ 1.5

- 。 EFT 系数空间在八维会出现正定结构, 这来自于量子场论的基本原理.
- 。为了实现Weinberg算符,新物理非常可能耦合到L和H,所以构建出包含LLHH的八维空间的凸结构,非常有利于我们探测该新物理。
 - 。对称性的不可约表示可以形成凸锥, seesaw模型作为SU(2)的不可约表示, 会很自然地出现在锥中。
- 。反向探测紫外态的能标下限能够由完善的凸优化程序实现。

- To formulate this approach, **symmetries of the system help** (will also discuss cases without symmetries)
- Make use of symmetries of the problem (SM symmetries, helicities)
- Dispersion relation: $M^{ijkl} = \sum_{X}' \int_{(\epsilon\Lambda)^2}^{\infty} \frac{d\mu m_X{}^{ij} m_X{}^{kl}}{\pi(\mu \frac{1}{2}M^2)^3} + (j \leftrightarrow l)$

• P_r^{ijkl} is the projective operator of an irrep r, obtained by CG coefficients.

$$P_{r}^{ijkl} = \sum_{\alpha} C_{i,j}^{r,\alpha} \left(C_{k,l}^{r,\alpha} \right)^{*}$$

• The generators are simply (subset of) $P_r^{i(j|k|l)}$

• Infer UV model from EFT measurements

Inverse problem: Given the measured values of the operator coefficients around the electroweak scale, to what extend can we possibly determine the nature of the new physics beyond the SM? [Gu, Wang, 2008.07551] see also [S. Dawson et al. 2007.01296] [N. Arkani-Hamed et al. hep-ph/0512190]

- Testing and confirming the SM: Null result of measurements at dim-6 does not exclude all BSM, but does at dim-8 by using positivity bounds
- <u>Dim-6: no positivity, different states may</u> <u>cancel each other' s effects.</u>
 - E.g., scalar and vector generate 4– fermion operators with opposite signs.
 - No UV particle can be absolutely excluded.
- <u>Dim-8: with positivity, different states are</u>
 <u>not allowed to cancel.</u>
 - All states can be exclude to some absolute scale. (by using posi. bound)
 - Unlike dim-6 cannot lift this limit by adding more and more BSM states.
 - A robust confirmation of the SM.

[2009.02212 B. Fuks, Y. Liu, CZ, S.-Y. Zhou]

