

Search for pentaquarks in B-meson decays at LHCb

张剑宇 中国科学院大学

2022年8月9日

中国物理学会高能物理分会

Outline

- A brief introduction of pentaquark
- Searching pentaquark states at LHCb
- $B^- \to J/\psi \Lambda \bar{p}$
- $B_s^0 \to J/\psi p \bar{p}$
- Summary

A brief introduction of pentaquark

A brief introduction of pentaquark

- The existence of multi-quark states is predicted by the quark model
- Minimal content $qqqq\bar{q}$

Brief history of multi-quark

2003: The first tetraquark candidate X(3872) was discovered by Belle.

2015+2019: Three hidden-charm pentaquark states $P_{\psi}^{N}(4312)^{+}$, $P_{\psi}^{N}(4440)^{+}$ and $P_{\psi}^{N}(4457)^{+}$ were observed by LHCb.

Phys. Rev. Lett. 115, 072001 (2015) Phys. Rev. Lett. 122, 222001 (2019)

Exotic hadron naming convention

Minimal quark	Current name	$I^{(G)}$, $J^{P(C)}$	Proposed name	Reference
content	0 411 0110 1101110	- , .	r roposod manie	
$c\overline{c}$	$\chi_{c1}(3872)$	$I^G = 0^+, \ J^{PC} = 1^{++}$	$\chi_{c1}(3872)$	[24, 25]
$car{c}uar{d}$	$Z_{c}(3900)^{+}$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\psi 1}(3900)^+$	[26-28]
$car{c}uar{d}$	$X(4100)^+$	$I^{G} = 1^{-}$	$T_{\psi}(4100)^+$	[29]
$car{c}uar{d}$	$Z_c(4430)^+$	$I^G = 1^+, \; J^P = 1^+$	$T^{b}_{\psi 1}(4430)^{+}$	[30, 31]
$car{c}(sar{s})$	$\chi_{c1}(4140)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(4140)$	[32 - 35]
$c\overline{c}u\overline{s}$	$Z_{cs}(4000)^+$	$I = \frac{1}{2}, J^P = 1^+$	$T^{\theta}_{\psi s1}(4000)^+$	[7]
$c\overline{c}u\overline{s}$	$Z_{cs}(4220)^+$	$I = \frac{1}{2}, \ J^P = 1^?$	$T_{\psi s1}(4220)^+$	[7]
$c\bar{c}c\bar{c}$	X(6900)	$I^G = 0^{-+}, \ J^{PC} = ?^{?+}$	$T_{\psi\psi}(6900)$	[4]
$csar{u}ar{d}$	$X_0(2900)$	$J^{P} = 0^{+}$	$T_{cs0}(2900)^0$	[5, 6]
$csar{u}ar{d}$	$X_1(2900)$	$J^{P} = 1^{-}$	$T_{cs1}(2900)^0$	[5, 6]
$ccar{u}ar{d}$	$T_{cc}(3875)^+$		$T_{cc}(3875)^+$	[8, 9]
$b \overline{b} u \overline{d}$	$Z_b(10610)^+$	$I^G = 1^+, \; J^P = 1^+$	$T^b_{\Upsilon 1}(10610)^+$	[36]
$c\bar{c}uud$	$P_c(4312)^+$	$I = \frac{1}{2}$	$P_{\psi}^{N}(4312)^{+}$	[3]
$c\bar{c}uds$	$P_{cs}(4459)^0$	$I = \overline{0}$	$P^{A}_{\psi s}(4459)^{0}$	[20]

LHCb-PUB-2022-013 arXiv:2206.15233

- T for tetraquarks, P for pentaquarks
- *P* states: i.e. $P_{\psi}^{N}(4312)^{+}, P_{\psi s}^{\Lambda}(4459)^{0}$
 - Superscript: denotes isospin, Λ , N, Σ , Δ for $I = 0, \frac{1}{2}, 1, \frac{3}{2}$
 - Subscript: Υ, ψ, ϕ for hidden beauty, charm, strangeness; *b*, *c*, *s* for open flavor quantum numbers

What is pentaquark?

Hadronic Molecules

Compact pentaquark

Rescattering effects

Rev. Mod. Phys. 90(2018)015004 PRD103(2021)112006 Eur.Phys.J.C 82 (2022) 7, 581

Phys. Rept. 668(2017)1

Few Body Syst. 57 (2016)1185

Prog. Part. Nucl. Phys. 112 (2020)103757

More pentaquarks states?

contact terms which are resummed to generate poles. It turns out that if a system is attractive near threshold by the light meson exchange, there is a pole close to threshold corresponding to a bound state or a virtual state, depending on the strength of interaction and the cutoff. In total, 229 molecular states are predicted. The observed near-threshold structures with hidden-charm, like the Progr.Phys.41(2021)65-93

中国物理学会高能物理分会

Searching pentaquark states at LHCb

LHCb detector and performance

 $2 < \eta < 5$, about 25% of $b\overline{b}$ pairs inside LHCb acceptance

Excellent time, IP, mass resolution, and excellent tracking, PID performance.

LHCb collected luminosity

• 9 fb⁻¹ pp collision sample collected in run1+run2

• Large *b* hadrons produced

$$B^{+}: B^{0}: B^{0}_{s}: \Lambda^{0}_{b}$$

$$(u\overline{b}) (d\overline{b}) (s\overline{b}) (udb)$$

$$4: 4: 1: 2$$

Pentaquark candidates in B-baryon decays

Evidence in $\Xi_b^- \rightarrow J/\psi \Lambda K^ P_{\psi s}^{\Lambda}(4459)^0$

- Excellent mass resolution is needed for narrow structures
- The interesting structures related to thresholds
- Spin and parity not determined

Why in *B*-meson decays?

- Small Q-value, providing excellent mass resolution, allows to search for narrow structures
- Search for pentaquark and anti-pentaquark states at the same time
- Sensitive to structures in baryon and anti-baryon system

Amplitude analysis of $B^- \to J/\psi \Lambda \bar{p}$ decays

LHCb-PAPER-2022-031 in preparation

$B^- \to J/\psi \Lambda \bar{p}$ decays

- Q value: 128 MeV
- Thresholds:
 - $J/\psi \bar{p} (c\bar{c}, \bar{u}\bar{u}\bar{d}): \Lambda_c^- D^0 (\bar{u}\bar{d}\bar{c}, c\bar{u})$
 - $J/\psi \Lambda (c\bar{c}, uds): \Lambda_c^+ D_s^- (udc, \bar{c}s)$ and $\Xi_c^+ D^- (usc, \bar{c}d)$

Leading Feynman diagram

2500

15

$B^- \to J/\psi \Lambda \bar{p}$ at CMS

- Limited statistics ~450 signals @8TeV
- Pure phase space hypothesis can not describe data
- $K_{2,3,4}^{*+}$ contributions decrease the incompatibility with data

$B^- \rightarrow J/\psi \Lambda \bar{p}$ data sample

LHCb run1+run2, 9 fb⁻¹ dataset: Signal window $\pm 2.5 \sigma$ Total 4600 signal candidates Purity 93% *B* mass resolution 2 MeV

$B^- \rightarrow J/\psi \Lambda \bar{p}$ amplitude analysis

- Helicity formalism amplitude and assuming no CPV
- Three decay chains: $J/\psi K^{*-}(\to \Lambda \bar{p})$, $\Lambda P_{\psi}^{N-}(\to J/\psi \bar{p})$ and $\bar{p}P_{\psi s}^{\Lambda}(\to J/\psi \Lambda)$
- Resonant lineshape: Relativistic Breit-Wigner (RBW)
- Λ decay parameter fixed to PDG value
- Non-resonant (NR) lineshape: constant or 2nd order polynomial
- Un-binned maximum likelihood fit:

$$-2\log \mathcal{L}(\vec{\omega}) = -2\sum_{i} \log \left[(1-\beta)\mathcal{P}_{\mathrm{sig}}(m_{\overline{p}\Lambda,i},\vec{\Omega_i}|\vec{\omega}) + \beta \mathcal{P}_{\mathrm{bkg}}(m_{\overline{p}\Lambda,i},\vec{\Omega_i}) \right]$$

中国物理学会高能物理分会

Model with only K^{*+}

 $K_{2,3,4}^{*+}$ + NR($p\overline{\Lambda}$) can not describe data well, especially for the $m(J/\psi\Lambda)$ distribution.

Amplitude models

Baseline model	NR(pΛ) constant	Nominal model
	$NR(\bar{p}J/\psi)$ 2nd order poly.	
	$P_{\psi s}^{\Lambda}(J/\psi\Lambda)$ RBW	

Nominal model fitting results

• First strangeness pentaquark candidate $P^{\Lambda}_{\psi s}(4338)^0$ near threshold of $\Xi^+_c D^-$ was discovered.

$$m(P_{\psi s}^{\Lambda}) = 4338.3 \pm 0.7 \pm 0.4 \text{ MeV}$$

 $\Gamma(P_{\psi s}^{\Lambda}) = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}$
Spin ¹/₂ assigned
¹/₂- preferred
¹/₂+ excluded at 90% C.L.

Amplitude mode with $P_{\psi s}^{\Lambda}$ and P_{ψ}^{N}

• Amplitude mode with additional RBW(P_{ψ}^{N}) for possible resonance around $\Lambda_{c}^{+}\overline{D}^{0}$

$$m(P_{\psi s}^{\Lambda}) = 4338.8 \pm 1.1 \text{ MeV}$$

 $\Gamma(P_{\psi s}^{\Lambda}) = 8.4 \pm 1.6 \text{ MeV}$

$$m(P_{\psi}^{N}) = 4152.3 \pm 2.0 \text{ MeV}$$

 $\Gamma(P_{\psi}^{N}) = 41.8 \pm 6.0 \text{ MeV}$

However, $-2\Delta log L \sim 80$, worse than nominal fit \Rightarrow no evidence of $P_{\psi}^{N}(4152)^{+}$

Amplitude mode with second $P_{\psi s}^{\Lambda}$

- There is one bin exceed around the threshold of $\Lambda_c^+ D_s^-$
- A second RBW($P_{\psi s}^{\Lambda}$) is added to the nominal model
- p value ≈ 0.2 , which determined from toys MC \Rightarrow no evidence of $P_{\psi s}^{\Lambda}(4255)^{0}$

Amplitude analysis of $B_s^0 \rightarrow J/\psi p\bar{p}$ decays

PRL128(2022)062001

$B_s^0 \to J/\psi p \bar{p}$ decays

- Q value: 393 MeV
- $m(J/\psi p)$ cover 4 thresholds
- Check $P_{\psi}^{N}(4312)^{+}$ and $P_{\psi}^{N}(4440)^{+}$

 $B_s^0 \rightarrow J/\psi p \bar{p}$ data sample

• $B_s^0 \rightarrow J/\psi p \bar{p}$ was observed at LHCb in 2019 firstly $\mathcal{B}(B_s^0 \rightarrow J/\psi p \bar{p})$ $= [3.58 \pm 0.19(\text{stat}) \pm 0.39(\text{syst})] \times 10^{-6}$

enhanced by 2 orders w.r.t. estimation w/o resonant contributions

LHCb run1+run2, 9 fb⁻¹ dataset: Total 780 signal candidates Purity 85% *B* mass resolution 3 MeV

中国物理学会高能物理分会

$B_s^0 \rightarrow J/\psi p\bar{p}$ amplitude analysis

- Helicity formalism amplitude and assuming no CPV
- Three decay chains: $J/\psi X(\to p\bar{p})$, $\bar{p}P_{\psi}^{N+}(\to J/\psi p)$ and $pP_{\psi}^{N-}(\to J/\psi \bar{p})$
- Resonant lineshape: Relativistic Breit-Wigner (RBW)
- The flavor of B_s^0 is untagged, so the total amplitude

$$|ar{\mathcal{M}}|^2 = rac{1}{2} (|\mathcal{M}(B^0)|^2 + |\mathcal{M}(ar{B}^0)|^2)$$

• Same fit strategy as $B^+ \to J/\psi \overline{\Lambda} p$ analysis

Nominal model fitting results

- Two amplitude models
 - Baseline: $NR(p\bar{p})$
 - Nominal: $NR(p\bar{p}) + RBW(P_{\psi}^{N\pm})$
- The mass, width and couplings for $P_{\psi}^{N\pm}$ are same
- Evidence for a charged pentaquark candidate $P_{\psi}^{N\pm}(4337)$
- Significance: 3.1~3.7 σ for $J^{P}(1/2^{\pm}, 3/2^{\pm})$

 $M(P_{\psi}^{N\pm}) = 4337_{-4}^{+7}(\text{stat})_{-2}^{+2}(\text{syst}) \text{ MeV}$ $\Gamma(P_{\psi}^{N\pm}) = 29_{-12}^{+26}(\text{stat})_{-14}^{+14}(\text{syst}) \text{ MeV}$

No evidence for $P_{n}^{N\pm}(4312)$ and $P_{n}^{N\pm}(4440)$

Summary

- Observation of first neutral pentaquark candidate $P_{\psi s}^{\Lambda}(4338)^0$ with strangeness in $B^- \to J/\psi \Lambda \bar{p}$ decays
 - Narrow state close to $\Xi_c^+ D^-$ threshold
 - Spin ¹/₂ assigned, negative parity preferred
- Evidence for a charged pentaquark candidate $P_{\psi}^{N}(4337)^{+}$ in $B_{s}^{0} \rightarrow J/\psi p \bar{p}$ decays
- No evidence for structures around thresholds of $\Lambda_c^+ \overline{D}{}^0$ and $\Lambda_c^+ D_s^-$
- Run3 is coming, expect to have more structures in following years

