Observation of a doubly charged tetraquark state and its neutral partner at LHCb

Ruiting Ma

University of Chinese Academy of Sciences, Beijing, China

On behalf of the LHCb Collaboration

Aug. 9th, 2022

Charmonium(-like) structures^[1]

- The existence of mesonic exotic state has been discussed since 1964^[2].
- ▶ In 2003, Belle Collaboration reported the first observation of $\chi_{c1}(3872)$.
- Many exotic states are observed in the past two decades.
- A series of theoretical models are established to describe these states.

[1] From Fengkun's talk on the *XYZ* Workshop in China
[2] M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8 (1964) 214.

Ruiting Ma (UCAS)

Introduction

The LHCb detector

[1] https://www.nikhef.nl/~pkoppenb/particles.html
 [2] Exotic hadron naming convention: https://arxiv.org/abs/2206.15233

^[3] $P_c(4450)^+$ resolved into $P_c(4440)^+$ and $P_c(4457)^+$.

Ruiting Ma (UCAS)

Masses and discovery date for states observed at LHCb. Hollow markers indicate superseded states.^{[1], [2]}

- 59 new hadrons observed at LHCb!
 - > 15 tetraquark candidates.
 - ➤ 5 pentaquark candidates.^[3]

Introduction

$T^a_{c\bar{s}0}(2900)^{0,++}$

• Why $D_s^+ \pi^{\pm}$ states?

- The $D_{s0}^*(2317)^+ (D_s^+\pi^0)$ state was observed in 2003.
- It is thought to have some **tetraquark component** in several theoretical descriptions, whose I = 1 partners can exist in the $D_s^+ \pi^{\pm}$ final states.
- **Prof. Hai-Yang:** It would be astonishing if a doubly charged resonance is found.

- Evidence of $X(5568)^+$ $(B_s^0\pi^{\pm})$ claimed by D0 Collaboration in 2016.
- Not been confirmed by the other experiments.
- Natural to search for $D_s^+\pi^\pm$ resonances as predicted in the diquarkantidiquark model.

PRL 117, 022003 (2016)

 $X(5568)^+$

PLB 566 (2003) 193–200

Introduction

$T^a_{c\bar{s}0}(2900)^{0,++}$

• Why $D_s^+ \pi^{\pm}$ states?

- In 2020, the $X_0(2900)^0$ and $X_1(2900)^0$ ($cs\bar{u}\bar{d}$), have been observed at LHCb in D^+K^- final states.
- They are candidates to be the first observed tetraquarks consisting of four different flavors. PRL 125, 242001 (2020) PRD 102, 112003 (2020)

- ► Would there be exotic states decaying into $D_s^+\pi^-(c\bar{s}\bar{u}d)$ or $D_s^+\pi^+(c\bar{s}u\bar{d})$ final states?
- Amplitude analyses of $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$ decays.
 - > Only excited \overline{D}^* states with natural spin-parity expected to contribute.
 - > Ideal channels to search for **possible exotic states** decaying to $D_s^+\pi^{\pm}$ final states.
 - Can be explored by LHCb datasets with large statistic!

Datasets

LHCb Preliminary

 $\blacklozenge B^0 \rightarrow \overline{D}{}^0 D^+_s \pi^- \& B^+ \rightarrow D^- D^+_s \pi^+$

• Using all the Run 1 and Run 2 datasets.

高能物理分会学术年会·大连

LHCb Preliminary

- ✓ Clear spin-2 vertical band at the $\overline{D}\pi$ mass squared around 6 GeV².
- ✓ A faint horizontal band at the $D_s \pi$ mass squared around 8.5 GeV².
- Very similar features in the Dalitz plots of two channels, which are isospin-related.
- It suggests the feasibility to perform **simultaneous fit** of the two channels.
 - The amplitude parameters of all components are set to be the same of the two channels.

• Unbinned maximum likelihood fits performed with TF-PWA

$$P(x;\Theta) = f_{\text{sig}} \cdot P_{\text{sig}}^{\text{norm}}(x;\Theta) + f_{\text{bkg}} \cdot P_{\text{bkg}}^{\text{norm}}(x),$$

Fractions determined from mass fits

• Background modelled from upper sideband with extrapolating into signal

regions

• Signal PDF:
$$P_{\text{sig}}^{\text{norm}}(x;\Theta) = \frac{\epsilon(x) |\mathcal{A}(x;\Theta)|^2}{I_{\text{sig}}(\Theta)}$$
.
Normalization factor

• Efficiencies obtained from full simulation with corrections for data-simulation difference

• **Amplitude model:**
$$\mathcal{A}(x;\Theta) = \sum c_i \cdot \mathcal{A}_i(x;\Theta_i),$$

Angular distribution + line shape (RBW etc.)

Fitting model

• The $\overline{D}\pi$ candidates with natural spin-parity on PDG:

Resonance	J^P	Mass~(GeV)	Width (GeV)	Comments
$\overline{D}^{*}(2007)^{0}$	1-	2.00685 ± 0.00005	$<2.1\times10^{-3}$	Width set to be $0.1 \mathrm{MeV}$
$D^{*}(2010)^{-}$	1-	2.01026 ± 0.00005	$(8.34 \pm 0.18) \times 10^{-5}$	
$\overline{D}_0^*(2300)$	0^+	2.343 ± 0.010	0.229 ± 0.016	#
$\overline{D}_2^*(2460)$	2^+	2.4611 ± 0.0007	0.0473 ± 0.0008	#
$\overline{D}_1^*(2600)^0$	1-	2.627 ± 0.010	0.141 ± 0.023	#
$\overline{D}_3^*(2750)$	3-	2.7631 ± 0.0032	0.066 ± 0.005	#
$\overline{D}_{1}^{*}(2760)^{0}$	1-	2.781 ± 0.022	0.177 ± 0.040	#
$\overline{D}_{J}^{*}(3000)^{0}$??	3.214 ± 0.060	0.186 ± 0.080	$\# J^P = 4^+$ is assumed

◆ Fit strategy – simultaneous fit

- > Include all the D^* and D^{**} states with natural spin-parity.
- $\blacktriangleright \overline{D}\pi$ S-wave component: quasi-model-independent description (QMI) spline points.*
- > All parameters, except $\overline{D}^*(2007)^0$ and $D^*(2010)^-$ are shared.
- > Spin-parity of D(3000) not established yet.

LHCb Preliminary

✓ Fit result

- ✓ $M(\overline{D}\pi)$ and $M(\overline{D}D_s^+)$ well described.
- ✓ $D_1^*(2600), D_1^*(2760), D(3000)$ not significant, however, still included conservatively.
- ✓ Spin-parity of D(3000) favors 4^+ .
- ✓ Further new \overline{D}^{**} state with spin-parity up to 4⁺ tested to be disfavored.

Peaking structures not well desceibed near $M(D_s^+\pi) = 2.9$ GeV!

LHCb Preliminary

- Two $D_s^+\pi$ exotic states with shared parameters are added.
 - ✓ J^P up to 3⁺ are tested, 0⁺ produces the best likelihood.
 - ✓ Significance greater that 9σ.
 ✓ Mass and width are measured:
 M = 2.908 ± 0.011 ± 0.020 GeV
 Γ = 0.136 ± 0.023 ± 0.013 GeV

✓ Named^{*} as $T^{a}_{c\bar{s}0}(2900)^{0}$ $(D^{+}_{s}\pi^{-})$ and $T^{a}_{c\bar{s}0}(2900)^{++}$ $(D^{+}_{s}\pi^{+})$

* Exotic hadron naming convention: https://arxiv.org/abs/2206.15233

Ruiting Ma (UCAS)

LHCb Preliminary

♦Spin test

- ✓ Generate pseudoexperiments.
- Spin-parity favored 0⁺ over 1⁻ with a significance about 7.6σ.
- ✓ 0⁺ is also significantly preferred when exotics not constrained by isospin.

LHCb Preliminary

Argand diagram

- ✓ Replace the BW of $T_{c\bar{s}0}^{a}$ with spline points.
- ✓ The 7 points from $m \frac{3}{2}\Gamma$ to $m + \frac{3}{2}\Gamma$, where *m* and Γ is the fitted values of $T^a_{c\bar{s}0}$ mass and width.
- ✓ Lineshape consistent with RBW.

Separate $T^{a}_{c\bar{s}0}(2900)^{0}$ and $T^{a}_{c\bar{s}0}(2900)^{++}$

• Separate $T^a_{c\bar{s}0}$ parameters

- ✓ $-\ln \mathcal{L}$ improved by 2.8, with 4 free parameters added.
- \checkmark Masses and widths are **consistent** with each other.

✓ Isospin triplet!

	Mass (GeV)	Width (GeV)	Significance
$T^a_{c\bar{s}0}(2900)^0$	$2.892 \pm 0.014 \pm 0.015$	$0.119 \pm 0.026 \pm 0.013$	8.0 <i>o</i>
$T^a_{c\bar{s}0}(2900)^{++}$	$2.921 \pm 0.017 \pm 0.020$	$0.137 \pm 0.032 \pm 0.017$	6.5 <i>σ</i>

LHCb Preliminary

LHCb Preliminary

• $T^a_{c\bar{s}0}(2900) \& X_0(2900)$

- ✓ Similar mass, but width and flavor contents are different.
- ✓ $T^{a}_{c\bar{s}1}(2900)?$
- $\checkmark T^{a}_{c\bar{s}0}(2900)^{++} \to D^{+}K^{+}?$
- $\checkmark T^a_{c\bar{s}0}(2900)^+ \to D^+_s \pi^0, D^+_s \pi^+ \pi^-?$

More statistic needed!

	Mass (GeV)	Width (GeV)
$T^a_{c\overline{s}0}(2900)$	$2.908 \pm 0.011 \pm 0.020$	$0.136 \pm 0.023 \pm 0.020$
<i>X</i> ₀ (2900)	$2.866 \pm 0.007 \pm 0.002$	$0.057 \pm 0.012 \pm 0.004$
<i>X</i> ₁ (2900)	$2.904 \pm 0.005 \pm 0.001$	$0.110 \pm 0.011 \pm 0.004$

 $X_0(2900), X_1(2900)[cs\overline{u}\overline{d}]$ PRD 102, 112003 (2020)

LHCb Preliminary

- First observation of a doubly charged mesonic exotic state, together with its neutral partner.
 - ✓ Belong to the **same isospin triplet**.
 - ✓ Spin-parity: 0⁺.
 - ✓ Minimum quark content: $T^a_{c\bar{s}0}(2900)^{++}$: $[c\bar{s}u\bar{d}]; T^a_{c\bar{s}0}(2900)^0$: $[c\bar{s}\bar{u}d]$
 - ✓ Similar mass with $X_0(2900)$ ($cs\bar{u}\bar{d}$), but width and flavor contents are different.

• Next step

- > Several ongoing $B \rightarrow DDh$ analyses with LHCb Run 1 and Run 2 datasets.
 - $\boldsymbol{B}: B^{0,+}, B^0_s, \Lambda^0_b...; \boldsymbol{D}: D^{0,+}, D^{*+}, D^+_s, \Lambda^+_c...; \boldsymbol{h}: K^+, \pi^+, p, \Lambda...$
- ➤ LHC Run 3 data taking started recently.
 - ✓ More statistic, detailed analysis on $B \to \overline{D}D_s\pi$
 - $\checkmark B \to \overline{D}D_s\pi^0, B \to \overline{D}D_s\pi\pi, B_s \to \overline{D}D_sK\pi \dots$

Back Up

Ruiting Ma (UCAS)

高能物理分会学术年会·大连

17

Amplitude formalism

$T^a_{c\bar{s}0}(2900)^{0,++}$

• Amplitude formula

For decay B → D(1)D⁺_s(2)π(3), the amplitude is

$$\mathcal{A} = \sum_{a} C_{a} \cdot f_{a}(m_{12}^{2}) \cdot T_{a}(\theta_{12}) + \sum_{b} C_{b} \cdot f_{b}(m_{23}^{2}) \cdot T_{b}(\theta_{23}) + \sum_{c} C_{c} \cdot f_{c}(m_{13}^{2}) \cdot T_{c}(\theta_{13}),$$

- *C* is complex coefficient
- $f(m^2)$ is lineshape function
- $T(\theta)$ is the angular term

For resonance, we use the relativistic Breit-Wigner lineshape

$$f_{BW} = q(m)^{L_1} p(m)^{L_2} \frac{F_1(m, L_1) F_2(m, L_2)}{m_0^2 - m^2 - im_0 \Gamma(m)}$$

with running width

$$\Gamma(m) = \Gamma_0 \left(rac{q(m)}{q_0}
ight)^{2L_2+1} rac{m_0}{m} F_2^2(m, L_2)$$

> The Blatt-Weisskopf form factors

$$F\left(m,L\right) = \begin{cases} 1 & L = 0\\ \sqrt{\frac{1+z^2(m)}{1+z_0^2}} & L = 1\\ \sqrt{\frac{9+3z^2(m)+z^4(m)}{9+3z_0^2+z_0^4}} & L = 2\\ \sqrt{\frac{225+45z^2(m)+6z^4(m)+z^6}{225+45z_0^2+6z_0^4+z_0^6}} & L = 3 \end{cases}$$

Maximum likelihood fit (cFit*)

> PDF(x; Θ) = $|A(x; \Theta)|^2$, where x is the data point, Θ is the parameter set.

 \blacktriangleright −2ln*L* = −2 \sum_{i}^{N} ln PDF(*x*; Θ)