

Deciphering

the Long－distance Penguin contribution to $B \rightarrow \gamma \gamma$ decays

Qin Qin（秦溱）

HUST（华中科技大学）

QQ，Y．－L．Shen，C．Wang，Y．－M．Wang，2207．02691

Contents

- Why $\bar{B} \rightarrow \gamma \gamma$?
- History of (1) $\bar{B} \rightarrow \gamma \gamma$ and (2) the long-distance penguin contribution
- Factorization of the long-distance penguin contribution
- - a novel B-meson distribution amplitude
- Numerics
- Summary and Prospects

B decays are important!

Why $\bar{B} \rightarrow \gamma \gamma$?

- Sensitive to dynamics beyond the SM (FCNC), e.g. CP violation
- Extraction of the CKM angle γ
- Clean environment to address the intricate strong interaction mechanism of the heavy-meson systems
- - structure of the B meson

Belle II
Physics Book

Why $\bar{B} \rightarrow \gamma \gamma$?

- Sensitive to dynamics beyond the SM (FCNC), e.g. CP violation
- Extraction of the CKM angle γ
- Clean environment to address the intricate strong interaction mechanism of the heavy-meson systems
- - structure of the B meson

Belle II
Physics Book

Observables	Belle $0.71 \mathrm{ab}^{-1}\left(0.12 \mathrm{ab}^{-1}\right)$	Belle II $5 \mathrm{ab}^{-1}$	Belle II 50 ab^{-1}
$\operatorname{Br}\left(B_{d} \rightarrow \gamma \gamma\right)$	$<740 \%$	30%	9.6%
$A_{C P}\left(B_{d} \rightarrow \gamma \gamma\right)$	-	78%	25%
$\operatorname{Br}\left(B_{s} \rightarrow \gamma \gamma\right)$	$<250 \%$	23%	-

$$
\begin{array}{r}
\mathcal{B R}\left(B_{d} \rightarrow \gamma \gamma\right)=\left(1.352_{-0.745}^{+1.242}\right) \times 10^{-8}, \quad \mathcal{B R}\left(B_{s} \rightarrow \gamma \gamma\right)=\left(2.964_{-1.614}^{+1.800}\right) \times 10^{-7} \\
{[\text { Y.-L. Shen, Y.-M. Wang, Y.-B. Wei, 2009.02723] }}
\end{array}
$$

History of $\bar{B} \rightarrow \gamma \gamma$

- $\mathrm{LO}+\mathrm{NLO}$

$$
\begin{gathered}
\bar{A}\left(\bar{B}_{q} \rightarrow \gamma \gamma\right)=-\frac{4 G_{F}}{\sqrt{2}} \frac{\alpha_{\mathrm{em}}}{4 \pi} \epsilon^{* \alpha}(p) \epsilon^{* \beta}(q) \times \sum_{p=u, c} V_{p b} V_{p q}^{*} \sum_{i=1}^{8} C_{i} T_{i, \alpha \beta}^{(p)}, \quad \text { Leading power } \\
T_{i, \alpha \beta}^{(p)}=i m_{B_{q}}^{3}\left[\left(g_{\alpha \beta}^{\perp}-i \varepsilon_{\alpha \beta}^{\perp}\right) F_{i, L}^{(p)}-\left(g_{\alpha \beta}^{\perp}+i \varepsilon_{\alpha \beta}^{\perp}\right) F_{i, R}^{(p)}\right], F_{L}^{\mathrm{LP}} \propto m_{b} \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B}^{+}(\omega, \mu) \propto \frac{m_{b}}{\lambda_{b}} \\
\text { Two polarizations }
\end{gathered}
$$

[Bosch, Buchalla, hep-ph/0208202; Descotes-Genon, Sacharajda, hep-ph/0212162]

- NLL corrections + Systematic power corrections

$$
\text { both } \sim \mathcal{O}(10 \%)
$$

[Y.-L. Shen, Y.-M. Wang, Y.-B. Wei, 2009.02723]

- One important but tough piece missing - - long-distance penguin contribution

History of Long-distance penguin contribution

In inclusive $b \rightarrow s$ decays

- Realized in $\bar{B} \rightarrow X_{s} \gamma$
[Voloshin, '96; Ligeti, Randall, Wise, '97; Buchalla, Isidori, Rey, '97]
- Factorization in $\bar{B} \rightarrow X_{S} \gamma$
[Benzke, Lee, Neubert, Paz, 1003.5012]
- Factorization in $\bar{B} \rightarrow X_{s} \ell \ell$ [Benzke, Hurth, Turczyk, 1705.10366]

In exclusive $b \rightarrow s$ decays

- Initiated in $B \rightarrow K^{*} \gamma$

Soft gluon from charm-loop
[Khodjamirian, Ruckl, Stoll, Wyler, '97]

- Developed in $B \rightarrow K^{*} \ell \ell$
[Khodjamirian, Mannel, Pivorarov, Wang, 1006.4945]

History of Long-distance penguin contribution

P_{5}^{\prime} : an angular-distribution observable
[LHCb, 2003.04831]

Charm-loop effect in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$and $B \rightarrow K^{*} \gamma$
A. Khodjamirian (Siegen U.), Th. Mannel (Siegen U.), A.A. Pivovarov (Siegen U.), Y.-M. Wang (Siegen U.)

Jun, 2010
35 pages
Published in: JHEP 09 (2010) 089
e-Print: 1006.4945 [hep-ph]
(B pf
cite

Factorization

Factorization

$$
\begin{array}{ll}
\mathcal{H}_{\mathrm{eff}}= & \frac{4 G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p b} V_{p q}^{*}\left[C_{1}(\nu) P_{1}^{p}(\nu)+C_{2}(\nu) P_{2}^{p}(\nu)+\sum_{i=3}^{8} C_{i}(\nu) P_{i}(\nu)\right. \\
\left.+\sum_{i=3}^{6} C_{i}(\nu) P_{i}^{Q}(\nu)\right]+ \text { h.c. }, & \\
P_{1}^{p}=\left(\bar{q}_{L} \gamma_{\mu} T^{a} p_{L}\right)\left(\bar{p}_{L} \gamma^{\mu} T^{a} b_{L}\right), & P_{2}^{p}=\left(\bar{q}_{L} \gamma_{\mu} p_{L}\right)\left(\bar{p}_{L} \gamma^{\mu} b_{L}\right), \\
P_{3}=\left(\bar{q}_{L} \gamma_{\mu} b_{L}\right) \sum_{q^{\prime}}\left(\bar{q}^{\prime} \gamma^{\mu} q^{\prime}\right), & P_{4}=\left(\bar{q}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum_{q^{\prime}}\left(\bar{q}^{\prime} \gamma^{\mu} T^{a} q^{\prime}\right), \\
P_{5}=\left(\bar{q}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} b_{L}\right) \sum_{q^{\prime}}\left(\bar{q}^{\prime} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} q^{\prime}\right), & \\
P_{6}=\left(\bar{q}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} T^{a} b_{L}\right) \sum_{q^{\prime}}\left(\bar{q}^{\prime} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} T^{a} q^{\prime}\right), &
\end{array}
$$

Factorization

Integrate out the hard and hard-collinear d.o.f.

$$
M=H^{*} J * S \quad\left(m_{b} \gg m_{c} \sim \mathcal{O}\left(\sqrt{\Lambda m_{b}}\right) \gg \Lambda\right)
$$

First-step match:

$$
\begin{aligned}
& \left.M \ni\left(C_{2}-\frac{C_{1}}{2 N_{c}}\right) Q_{p}\left[F\left(\frac{m_{p}^{2}-i 0^{+}}{(p-l)^{2}}\right)-1\right] \frac{p^{\alpha}}{(p-l)^{2}}\right) \\
& F(x)=4 x \arctan ^{2}\left(\frac{1}{\sqrt{4 x-1}}\right) \text { Non-local operator! } \\
& (p-l)^{2}=-2 p \cdot l=-m_{b} \bar{n} \cdot l
\end{aligned}
$$

Factorization

Second-step match:

$$
\begin{gathered}
\langle\gamma(p) \gamma(q)| \bar{q} \gamma_{\beta} P_{L} G_{\mu \alpha} \tilde{F}^{\mu \beta} b|g(l) b(v) \bar{q}(k)\rangle \\
\Rightarrow \frac{i g_{\mathrm{em}} e_{q}}{\left.(q-k)^{2}\right)^{\mu \beta \lambda \tau}} p_{\lambda} \epsilon_{\tau}^{*}(p) \epsilon_{\rho}^{*}(q) \times \bar{q} \underline{\left.\bar{q}(k) \gamma_{\perp}^{\rho} 4 \gamma_{\beta} P_{L} G_{\mu \alpha}(\ell) b(v)\right]} \\
(q-k)^{2}=-2 q \cdot k=-m_{b} n \cdot k
\end{gathered}
$$

- The hard-kernel (jet functions) depends on 2 different light-cone components of the gluon and light quark momenta.
- It becomes evident to introduce the 3-particle B-meson distribution amplitude with 2 light-cone directions.

$$
H \star J \star \bar{J} \star \Phi_{\mathrm{G}}
$$

Factorization

The explicit factorization formula:

$$
\sum_{i=1}^{8} C_{i} F_{i, L}^{(p) \text { soft } 4 \mathrm{q}}=-\frac{Q_{q} f_{B_{q}}}{m_{B_{q}}} \int_{0}^{\infty}\left(\frac{d \omega_{1}}{\omega_{1}}\right) \int_{0}^{\infty}\left(\frac{d \omega_{2}}{\omega_{2}}\left(C_{2}-\frac{C_{1}}{2 N_{c}}\right) Q_{p}\left[F\left(-\frac{m_{p}^{2}}{m_{b} \omega_{2}}\right)-1\right] \times \Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu\right)\right.
$$

The light quark momentum component $\omega_{1}=n \cdot k$; The soft gluon momentum component $\omega_{2}=\bar{n} \cdot l$.

The novel B-meson DA:

$$
\begin{aligned}
& \left.\langle 0|{\overline{q_{s}}}_{s} n\right)\left(g_{s} G_{\mu \nu}\right)\left(\tau_{2} \bar{n}\right) \bar{n}^{\nu} h \gamma_{\perp}^{\mu} \gamma_{5} h_{v}(0)\left|\bar{B}_{v}\right\rangle \\
& =2 \tilde{f}_{B}(\mu) m_{B} \int_{0}^{\infty} d \omega_{1} \int_{0}^{\infty} d \omega_{2} \exp \left[-i\left(\omega_{1} \tau_{1}+\omega_{2} \tau_{2}\right)\right] \Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu\right)
\end{aligned}
$$

- The quark and gluon fields are localized on $\underline{2}$ distinct light-cone directions.

```
It might opens an exciting new research subfield aiming at the multidimensional
tomography of the composite bottom-meson systems.
```


Factorization

The normalization conditions of Φ_{G} :

Matching the conventional 3-particle B meson DAs as τ_{1} or $\tau_{2} \rightarrow 0$ 。
$\langle 0| \bar{q}\left(z_{1}\right)\left(g_{s} G_{\mu \nu}\right)\left(z_{2}\right) \bar{n}^{\nu} h \gamma_{1}^{\mu} \gamma_{5} h_{v}(0)\left|\bar{B}_{v}\right\rangle==2 \tilde{f}_{B}(\mu) \Phi_{4}\left(z_{1}, z_{2}, \mu\right)$
Twist 4
$\langle 0| \bar{q}\left(z_{1}\right)\left(g_{s} G_{\mu \nu}\right)\left(z_{2}\right) n^{\nu} \quad \hbar \gamma_{\perp}^{\mu} \gamma_{5} h_{v}(0)\left|\bar{B}_{v}\right\rangle=2 \tilde{f}_{B}(\mu) \Phi_{5}\left(z_{1}, z_{2}, \mu\right)$
Twist 5
[Braun, Ji, Manashov, 1703.02446]

$$
\begin{aligned}
& \int_{0}^{\infty} d \omega_{1} \Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu\right)=\int_{0}^{\infty} d \omega_{1} \Phi_{4}\left(\omega_{1}, \omega_{2}, \mu\right) \\
& \int_{0}^{\infty} d \omega_{2} \Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu\right)=\int_{0}^{\infty} d \omega_{2} \Phi_{5}\left(\omega_{1}, \omega_{2}, \mu\right) \\
& \int_{0}^{\infty} d \omega_{1} \int_{0}^{\infty} d \omega_{2} \Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu\right)=\frac{\lambda_{E}^{2}+\lambda_{H}^{2}}{3}
\end{aligned}
$$

The asymptotic behaviors of Φ_{G} :

$$
\Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu\right) \sim \omega_{1} \omega_{2}^{2} \text { at } \omega_{1}, \omega_{2} \rightarrow 0
$$

Factorization

The explicit factorization formula:

$$
\begin{gathered}
\sum_{i=1}^{8} C_{i} F_{i, L}^{(p), \text { soft } 4 \mathrm{q}}=-\frac{Q_{q} f_{B_{q}}}{m_{B_{q}}} \int_{0}^{\infty}\left(\frac{d \omega_{1}}{\omega_{1}}\right) \int_{0}^{\infty}\left(\frac{d \omega_{2}}{\omega_{2}}\right)\left(C_{2}-\frac{C_{1}}{2 N_{c}}\right) Q_{p}\left[F\left(-\frac{m_{p}^{2}}{m_{b} \omega_{2}}\right)-1\right] \times \Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu\right) \\
\\
\Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu\right) \sim \omega_{1} \omega_{2}^{2} \text { at } \omega_{1}, \omega_{2} \rightarrow 0
\end{gathered}
$$

The convolution integral converges.

$$
\begin{aligned}
& \int_{0}^{\infty} d \omega_{1} \Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu\right)=\int_{0}^{\infty} d \omega_{1} \Phi_{4}\left(\omega_{1}, \omega_{2}, \mu\right), \\
& \int_{0}^{\infty} d \omega_{2} \Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu\right)=\int_{0}^{\infty} d \omega_{2} \Phi_{5}\left(\omega_{1}, \omega_{2}, \mu\right), \\
& \int_{0}^{\infty} d \omega_{1} \int_{0}^{\infty} d \omega_{2} \Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu\right)=\frac{\lambda_{E}^{2}+\lambda_{H}^{2}}{3},
\end{aligned}
$$

The power counting: $F_{L}^{\text {soft } 4 \mathrm{q}} / F_{L}^{\mathrm{LP}} \sim \lambda_{B} / m_{b}$

Numerics

The Φ_{G} parametrization:

$$
\Phi_{\mathrm{G}}\left(\omega_{1}, \omega_{2}, \mu_{0}\right)=\frac{\lambda_{E}^{2}+\lambda_{H}^{2}}{6} \frac{\omega_{1} \omega_{2}^{2}}{\omega_{0}^{5}} \exp \left(-\frac{\omega_{1}+\omega_{2}}{\omega_{0}}\right) \frac{\Gamma(\beta+2)}{\Gamma(\alpha+2)} U\left(\beta-\alpha, 4-\alpha, \frac{\omega_{1}+\omega_{2}}{\omega_{0}}\right)
$$

- The up-loop contribution dominates; the charm-loop is 1-order smaller.
- The new power correction accidentally cancels the previous ones.

Clean channel to determine λ_{B} and to probe new physics.

Numerics

The B_{d} results:

	Central Value	Total Error	$\lambda_{B_{d}}$	$\left\{\widehat{\sigma}_{B_{d}}^{(1)}, \widehat{\sigma}_{B_{d}}^{(2)}\right\}$	μ	ν	μ_{h}	$\bar{\Lambda}$	m_{c}^{PS}	
$10^{8} \times \mathcal{B R}$	1.929 [1.900]	+1.096 -1.012	${ }_{-0.439}^{+0.680}$	${ }^{+0.736}$	${ }_{-0.299}^{+0.083}$	${ }_{-0.287}^{+0.278}$	${ }_{-0.066}^{+0.246}$	${ }_{-0.200}^{+0.212}$	${ }_{-0.043}^{+0.043}$	
$f_{\\|}$	0.408 [0.407]	${ }_{-0.046}^{+0.044}$	${ }_{-0.015}^{+0.015}$	${ }_{-0.033}^{+0.016}$	${ }_{-0.009}^{+0.002}$	${ }_{-0.026}^{+0.037}$	${ }_{-0.002}^{+0.007}$	+0.005 -0.006	${ }_{-0.002}^{+0.002}$	
f_{\perp}	0.592 [0.593]	${ }_{-0.044}^{+0.046}$	${ }_{-0.015}^{+0.015}$	+0.033 -0.016	${ }_{-0.002}^{+0.009}$	${ }_{-0.037}^{+0.026}$	${ }_{-0.007}^{+0.002}$	${ }_{-0.005}^{+0.006}$	${ }_{-0.002}^{+0.002}$	
$\mathcal{A}_{\mathrm{CP}}^{\text {dir, }}$ \\|	0.126 [0.129]	${ }_{-0.027}^{+0.043}$	${ }_{-0.004}^{+0.007}$	${ }_{-0.010}^{+0.017}$	${ }_{-0.008}^{+0.013}$	${ }_{-0.018}^{+0.027}$	${ }_{-0.012}^{+0.024}$	${ }_{-0.007}^{+0.007}$	${ }_{-0.004}^{+0.004}$	
$\mathcal{A}_{\mathrm{CP}}^{\text {mix }, \\|}$	-0.197 [-0.154]	${ }_{-0.084}^{+0.053}$	${ }_{-0.036}^{+0.019}$	${ }_{-0.002}^{+0.001}$	${ }_{-0.047}^{+0.021}$	${ }_{-0.040}^{+0.026}$	${ }_{-0.029}^{+0.015}$	${ }_{-0.013}^{+0.011}$	${ }_{-0.009}^{+0.008}$	
$\mathcal{A}_{\Delta \Gamma}^{\\|}$	-0.972 [-0.980]	${ }_{-0.013}^{+0.024}$	+0.009 -0.004	${ }_{-0.002}^{+0.003}$	${ }_{-0.005}^{+0.013}$	${ }_{-0.007}^{+0.013}$	${ }_{-0.004}^{+0.010}$	${ }_{-0.003}^{+0.004}$	${ }_{-0.002}^{+0.002}$	
$\mathcal{A}_{\mathrm{CP}}^{\text {dir, } \perp}$	0.330 [0.326]	${ }_{-0.053}^{+0.078}$	${ }_{-0.012}^{+0.015}$	${ }_{-0.035}^{+0.060}$	${ }_{-0.014}^{+0.035}$	${ }_{-0.024}^{+0.012}$	${ }_{-0.010}^{+0.014}$	${ }_{-0.016}^{+0.018}$	${ }_{-0.017}^{+0.018}$	
$\mathcal{A}_{\mathrm{CP}}^{\text {mix }, \perp}$	0.136 [0.101]	${ }_{-0.066}^{+0.087}$	${ }_{-0.028}^{+0.043}$	${ }_{-0.035}^{+0.015}$	${ }_{-0.014}^{+0.025}$	${ }_{-0.038}^{+0.060}$	${ }_{-0.012}^{+0.026}$	${ }_{-0.003}^{+0.003}$	$\begin{aligned} & { }_{-0.008}^{+0.009} \end{aligned}$	
$\mathcal{A}_{\Delta \Gamma}^{\perp}$	0.934 [0.940]	${ }^{+0.017}$	+0.000 -0.003	+0.009 -0.019	${ }_{-0.017}^{+0.007}$	${ }_{-0.002}^{+0.001}$	$\begin{gathered} { }_{-0.009}^{+0.005} \end{gathered}$	${ }_{-0.007}^{+0.006}$	${ }_{-0.008}^{+0.007}$	

Summary and prospects

- We have factorized the long-distance penguin contribution to $\bar{B} \rightarrow \gamma \gamma$ decay, for the first time in an exclusive decay.
- A novel B-meson DA is defined, with quark and gluon fields localized on two different light-cone directions. It will open a new subfield about the inner structure of the B meson.
- The new contribution cancels the known factorizable power corrections, making $\bar{B} \rightarrow \gamma \gamma$ a clean channel to determine $\lambda \mathrm{B}$ and to probe the nonstandard four-fermion interactions.
- The developed formalism has a broad field of applications to the entire spectrum of the exclusive FCNC B-meson decays, including flagship modes, e.g. $B \rightarrow K^{*} \gamma, B \rightarrow K^{*} \mu \mu$.

Backup

	B_{d}	B_{s}
$\mathcal{A}^{\mathrm{LP}, \mathrm{NLL}}\left[10^{-4}\right]$	$3.4+1.9 i$	$-20-0.37 i$
$\mathcal{A}^{\mathrm{fac}, \mathrm{NLP}}\left[10^{-4}\right]$	$-0.15-0.53 i$	$0.92+2.6 i$
$\mathcal{A}_{R}^{\mathrm{fac}, \mathrm{NLP}}\left[10^{-4}\right]$	$0.25-0.36 i$	$-1.6+2.6 i$
$\mathcal{A}^{\mathrm{had}, \gamma}\left[10^{-4}\right]$	$-0.30-0.17 i$	$1.4-0.0021 i$
$\mathcal{A}^{\text {soft, 4q }}\left[10^{-4}\right]$	$(-0.0079+0.078 i)$	$-0.11+0.016 i$
$\left(F_{u}^{\mathrm{LP}, \mathrm{NLL}}, F_{c}^{\mathrm{LP}, \mathrm{NLL}}\right)$	$(-0.056-0.0092 i,-0.048-0.0019 i)$	$(-0.057-0.0094 i,-0.049-0.0020 i)$
$\left(F_{u}^{\mathrm{had}, \gamma}, F_{c}^{\mathrm{had}, \gamma}\right)$	$(0.0051+0.00092 i, 0.0043+0.00019 i)$	$(0.0094+0.0016 i, 0.0034+0.00016 i)$
$\left(F_{u}^{\text {soft,4q}}, F_{c}^{\text {soft,4q }}\right)$	$(-0.0024,-0.00025)$	$(-0.0021,-0.00025)$
$\left(F_{u}^{\mathrm{HC}}, F_{c}^{\mathrm{HC}}\right)$	$(0.0055,0.0055)$	$(0.0067,0.0067)$
$\left(F_{u}^{\mathrm{m}_{\mathrm{q}}}, F_{c}^{\mathrm{m}_{\mathrm{q}}}\right)$	$(0.000049,0.000049)$	$(0.00078,0.00078)[0.00079]$
$\left(F_{u}^{\mathrm{A}}, F_{c}^{\mathrm{A}}\right)$	$(-0.0010,-0.0010)$	$(-0.0011,-0.0011)$
$\left(F_{u}^{\mathrm{HT}}, F_{c}^{\mathrm{HT}}\right)$	$(0.0046,0.0046)[0.0047]$	$(0.0048,0.0048)[0.0050]$
$\left(F_{u}^{\mathrm{Q}_{\mathrm{b}}}, F_{c}^{\mathrm{Q}_{\mathrm{b}}}\right)$	$(-0.0036,-0.0036)$	$(-0.0043,-0.0043)$
$\left(F_{u}^{\mathrm{WA}}, F_{c}^{\mathrm{WA}}\right)$	$(-0.0049+0.000092 i,-0.0037+0.0056 i)$	$(-0.0059+0.00011 i,-0.0045+0.0065 i)$
$\left(F_{u}^{\mathrm{fac}, \mathrm{NLP}}, F_{c}^{\mathrm{fac}, \mathrm{NLP}}\right)$	$(0.00054+0.000092 i, 0.0018+0.0056 i)$	$(0.00098+0.00011 i, 0.0023+0.0065 i)$
	$[(0.00063+0.000092 i, 0.0019+0.0056 i)]$	$(0.0011+0.00011 i, 0.0024+0.0065 i)$
$\left(F_{R, u}^{\mathrm{fac}, \mathrm{NLP}}, F_{R, c}^{\mathrm{fac}, \mathrm{NLP}}\right)$	$(-0.0046+0.000092 i,-0.0033+0.0056 i)$	$(-0.0054+0.00011 i,-0.0041+0.0065 i)$

$$
A=V_{u q}^{*} V_{u b} F_{u}+V_{c q}^{*} V_{c b} F_{c}(q=d, s)
$$

