CPEC MOST2 vertex detector module assembly with Gantry system

Xinhui Huang Institute of High Energy Physics, CAS, Beijing

Introduction

Assemble the MOST2 sensor and flex for prototype

Automatic assembly procedures Design

The Gantry system in IHEP

Robotic pick-and place for systematic module assembly (gantry)				
Motion	500mm * 500mm * 150mm * 340° travel, repositioning resolution ~ $1\mu m$			
Vision	Keyence high resolution camera			
Sensor & Controller	Pressure Nordson EFD Glue Dispensing Controller			
Tooling	Custom tooling		Flexible vacuum, air pressure piping	
Software	System: C++ Qt		Camera: Keyence recognition	
	地心科技	<image/>		

Status in IHEP

- \checkmark Assembly single dummy sensor manually.
- ✓ Gluing pattern design.
- ✓ Complete wire-bonding test.
- Primary assembly test for single dummy sensor (glass)

Task ongoing:

- Improve pattern recognition precision for alignment of 10 sensors on 1 flex.
- Improve the tooling design for sucking and pressing sensors for better glue coverage
- Optimize the parameters (especially pressure) and tooling design to avoid damage on the sensors.
- Design protection shell for modules after wire-bonding.

The specification is referred to HGTD TDR.

Glue thickness	50 ± 30μm
Con hotwoon concore	$70 - 120 \mu m$

Dummy sensor (glass) assembly

Gap between sensors

 $/0 \sim 130 \mu m$

Summary

- \succ This procedure is designed for assembly test and prototype assembly.
- \succ We reach the precision with one single module assembly. The glue thickness and coverage can be controlled.

Outlook

- \triangleright Design more custom tools and vacuum chucks.
- > Develop the standard procedure for automatic module assembly.
- > Develop the software for better HC interaction.

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 August 8-11, 2022, Dalian