

中国物理学会高能物理分会第十一届全国会员代表大会 2022-8-9, 大连

"Ridge" in small systems

Beginning of the story:

"Ridge" in all hadronic high-multiplicity collisions

Collective natures in small system

Dozens of results from LHC and RHIC

Similar collective natures as in AA!!

A small droplet of QGP? Other novel QCD effects?

Overviews: K.Dusling, W.Li, B.Schenke arXiv:1509.07939; J.L.Nagle, W.A.Zajc arXiv:1801.03477

Origin of collectivity?

Both scenarios describe collective natures

Origin of collectivity?

Both scenarios describe collective natures with caveats

Origin of collectivity?

Both scenarios describe collective natures with caveats What more can we do to distinguish them?

Geometry response in small systems

Small system scan PHENIX

Nature Phys. 15 (2019) no.3, 214-220

Small system scan PHENIX

Nature Phys. 15 (2019) no.3, 214-220

Small system scan PHENIX

Nature Phys. 15 (2019) no.3, 214-220

Small system scan STAR

STAR utilizes multiple non-flow removal methods

Small system scan STAR

Comparison to models

Models include sub-nucleon structure Weaker ε ordering

Comparison to models

Current models cannot describe v₂ & v₃ simultaneously

Comparison to models

(a) no fluctuationModels (b) nucleonic fluctuation(c) sub-nucleonic fluctuation

Nevertheless the results reveal the importance of nucleonic & sub-nucleonic fluctuation

Different kinematic regions might probe partons with different x

arXiv: 2107.06634

Different kinematic regions might probe partons with different x Non-flow controlled by experimental techniques

arXiv: 2107.06634

Different kinematic regions might probe partons with different x Non-flow controlled by experimental techniques Urgent needs to understand 3D initial state and dynamic evolution

Probing 3D initial state in AA

Longitudinal decorrelation is a unique probe LHC has limited ability to probe system size and energy dependence

Probing 3D initial state in AA

From Xiaofeng Luo

√s _{NN} (GeV)	Events (10 ⁶)	BES II / BES I
200	238	2010
62.4	46	2010
54.4	1200	2017
39	86	2010
27	30 (<mark>560</mark>)	2011/2018
19.6	538 / 15	2019 /2011
14.5	325 / 13	2019 /2014
11.5	230 / 7	2020 /2010
9.2	160 / 0.3	2020 /2008
7.7	100 / 3	2021 /2010
17.3	250	2021

Longitudinal decorrelation is a unique probe LHC has limited ability to probe system size and energy dependence RHIC is the ideal place with isobar and BESII programs

Decorrelation in RuRu & ZrZr

Most precise results at RHIC Comparable to 200 GeV AuAu results See a model study by 聂茂武 (Aug. 9 17:00)

Decorrelation vs. collision energy

Clear energy dependence observed Hint of nonlinear energy dependence? Stringent constrains on initial states with finite μ_B

Decorrelation vs. collision energy

 $\begin{array}{c} \mbox{Clear energy dependence observed} \\ \mbox{Hint of nonlinear energy dependence?} \\ \mbox{Stringent constrains on initial states with finite μ_{B}} \\ \mbox{Stay tuned for results with more energies!} \end{array}$

Future opportunities – intermediate collisions

Future opportunities – intermediate collisions

First step to extend HF flow measurement to smaller systems @ RHIC See talk by 杨钱 (Aug.11 9:40)

Future opportunities – more observables

Hint of local polarization linking to collective flow See talk by 苟兴瑞 (Aug.11 15:40) Is it there in smaller systems?

Future opportunities – smaller collisions

Stay tuned for EIC

Future opportunities – fill the table

	RHIC			LHC		
	рр	p/d/He³Au	Zr/Ru/O	рр	рА	Xe/Ar/O
Ridge v _n	?	\checkmark	√/?	\checkmark	\checkmark	√/?
Flow fluctuation	?	√/?	√/?	\checkmark	\checkmark	√/?
Jet quenching	?	?	?	X	X	√/?
Strangeness enhancement	?	?	?	\checkmark	\checkmark	?
Heavy Flavor v _n	?	?	?	\checkmark	\checkmark	?
Hyperon Polarization	?	?	√/?	?	?	?

Plenty of treasure boxes to open

Summary

Investigation of collectivity in p/d/He³Au collisions has revealed

- Key role of nucleonic & sub-nucleonic fluctuations
- Urgent needs to understand 3D initial states & dynamic evolution

Summary

Investigation of collectivity in p/d/He³Au collisions has revealed

- Key role of nucleonic & sub-nucleonic fluctuations
- Urgent needs to understand 3D initial states & dynamic evolution

Thank you

Back up

STAR PHENIX comparison

ATLAS: Phys. Rev. C 90, 044906 (2014) PHNEIX: Nature Phys. 15, 214 (2019)

Geometry response in small systems

Different results with different kinematics range Reveal the impact of decorrelation & non-flow Important for cross-experiment & theory comparison

Geometry response in small systems

STAR has taken dAu with iTPC+EPD Will take pAu with iTPC+EPD+forward upgrade Stay Tuned!