Progresses of future colliders

--- STCF & CEPC

Gang Li for the STCF and CEPC working groups

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

2022.08.08-11, 大连

After the Higgs discovery in 2012, lots of achievements, still many fundamental questions remain unanswered

Higgs itself

Dark matter

Matter - anti-matter asymmetry

Mass hierarchy

Neutrinos

QCD confinement and exotic particles

Dark energy

Gravity

New data is much more important than ever !

Two circular e⁺e⁻ colliders proposed by Chinese scientists

Super Tau-Charm

Physics at τ -Charm Region

- Rich of physics, unique for physics with *c* quark and τ lepton
- important playground for study of nature of non-pQCD, exotics, flavor physics, and search for new physics.

STCF in China

- CME : 2-7 GeV
- Peaking $\mathcal{L} : > 5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Potential to further improve the lumi and realize polarized beam
- Double storage ring : ~800 m , injection : ~ 300m
- BESIII-Like detector
- Cost 4.5B RMB

Project progress and plan

7

Accelerator Conceptual Design

Interaction region :

- Large Piwinski-Angle Collision + Crabbed Waist Linac Injector:
- No booster, full energy injection (1-3.5 GeV)
- Possible polarized e⁻ beam

Parameters	Unit	Value
Circumference	m	574.78
Distance from final defocusing quadrupole to IP	m	0.9
Optimized energy	GeV	2.0
Total beam current	Α	2
Horizontal/Vertical beta @ IP	m	0.09/0.0006
Total crossing angle (2θ)	mrad	60
Piwinski angle (ϕ)	rad	18.9
Beam-beam tune shift (ξ_x/ξ_y)	_	0.0038/0.0835
Coupling ratio	_	0.5%
Natural chromaticities (C_x/C_y)	_	-87/-513
Horizontal emittance (ϵ_x) without/with IBS	nmrad	2.76/4.17
Horizontal beam size @ IP without/with IBS	μm	15.77/19.37
Vertical beam size @ IP without/with IBS	μm	0.091/0.117
Energy spread $\left(\frac{\sigma_{AE}}{E}\right)$ without/with IBS	×10 ⁻⁴	5.3/7.2
Momentum compaction factor	_	7.2×10^{-4}
RF frequency	MHz	499.67268
RF voltage	MV	1.2
Harmonic number	_	958
Bunch length (σ_z)	mm	12.2
Particle number per bunch (N_b)	_	5.0×10^{10}
Energy loss per turn	MeV	0.1315
Synchrotron tune (v_s)	_	0.00388
Damping times $(\tau_x/\tau_y/\tau_s)$	ms	58.51/58.33/29.12
Peak luminosity	$cm^{-2}s^{-1}$	1.2×10^{35}
Touschek lifetime	S	35

STCF Detector

A BESIII-like detector but better than BESIII

- Inner Tracker
 - ~0.15% X₀ / layer
 - σ_{xy} ~ 50 μm
- Out Tracker
 - $\sigma_{xy} \sim 130 \ \mu m, \ \sigma_p/p \sim 0.5\% @1 \ GeV/c$
 - dE/dx ~ 6%
- PID system
 - $\pi/K(K/p)$ 3-4 σ separation up to 2 GeV/c
- Electromagnetic Calorimeter
 - Range: 0.02 3 GeV
 - Resolution (1 GeV): 2.5% (barrel) and 4% (endcap)
- Muon system
 - π suppression power: >10 and lower to 0.4 GeV/c

Detector Conceptual Design

Data Samples

1 ab⁻¹ data expected per year

Table 1: The expected numbers of events per year at different energy points at STCF					
CME (GeV)	Lumi (ab ⁻¹)	samples	$\sigma(nb)$	No. of Events	remark
3.097	1	J/ψ	3400	3.4×10^{12}	
3.670	1	$\tau^+\tau^-$	2.4	2.4×10^{9}	
		ψ(3686)	640	6.4×10^{11}	
3.686	1	$\tau^+\tau^-$	2.5	2.5×10^{9}	
		$\psi(3686) \rightarrow \tau^+ \tau^-$		2.0×10^{9}	
		$D^0 ar{D}^0$	3.6	3.6×10^{9}	
		$D^+ \overline{D}^-$	2.8	2.8×10^{9}	
3.770	1	$D^0 ar D^0$		7.9×10^{8}	Single Tag
		$D^+ \overline{D}^-$		5.5×10^{8}	Single Tag
		$\tau^+\tau^-$	2.9	2.9×10^{9}	
		$\gamma D^0 \overline{D}^0$	0.40	4.0×10^{6}	$CP_{D^0\bar{D}^0} = +1$
4.040	1	$\pi^0 D^0 ar D^0$	0.40	4.0×10^{6}	$CP_{D^0\bar{D}^0} = -1$
4.040	1	$D_s^+ D_s^-$	0.20	2.0×10^{8}	
		$\tau^+\tau^-$	3.5	3.5×10^{9}	
		$D_{s}^{+*}D_{s}^{-}+\text{c.c.}$	0.90	9.0×10^{8}	
4.180	1	$D_{s}^{+*}D_{s}^{-}+c.c.$		1.3×10^{8}	Single Tag
		$\tau^+\tau^-$	3.6	3.6×10^{9}	
		$J/\psi \pi^+\pi^-$	0.085	8.5×10^{7}	
4.230	1	$\tau^+\tau^-$	3.6	3.6×10^{9}	
		γX(3872)			
4 360	1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^{7}	
4.300	1	$\tau^+\tau^-$	3.5	3.5×10^{9}	
4 420	1	$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^{7}	
4.420	1	$\tau^+\tau^-$	3.5	3.5×10^{9}	
4.620		$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^{7}	
4.030	1	$\Lambda_c \bar{\Lambda}_c$	0.56	5.6×10^{8}	
	1	$\Lambda_c \bar{\Lambda}_c$		6.4×10^{7}	Single Tag
		$\tau^+\tau^-$	3.4	3.4×10^{9}	
4.0-7.0	3	300 points	scan with 1	0 MeV step, 1 fb ⁻	¹ /point
> 5	2-7	several ab ⁻¹ high energy data, details dependent on scan results			

Hyperon Factory

Decay mode	$\mathcal{B}(\text{units } 10^{-4})$	Angular distribution parameter α_{ψ}	Detection efficiency	No. events expected at STCF
$J/\psi \to \Lambda \bar{\Lambda}$	$19.43 \pm 0.03 \pm 0.33$	0.469 ± 0.026	40%	1100×10^{6}
$\psi(2S) \rightarrow \Lambda \bar{\Lambda}$	$3.97 \pm 0.02 \pm 0.12$	0.824 ± 0.074	40%	130×10^{6}
$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$	11.65 ± 0.04	0.66 ± 0.03	14%	230×10^{6}
$\psi(2S) \rightarrow \Xi^0 \bar{\Xi}^0$	2.73 ± 0.03	0.65 ± 0.09	14%	32×10^{6}
$J/\psi \rightarrow \Xi^- \bar{\Xi}^+$	10.40 ± 0.06	0.58 ± 0.04	19%	270×10^{6}
$\psi(2S)\to \Xi^-\bar{\Xi}^+$	2.78 ± 0.05	0.91 ± 0.13	19%	42×10^{6}

Light meson Factory

Decay Mode	$\mathcal{B}(\times 10^{-4})$ [2]	η/η' events
$J/\psi ightarrow \gamma \eta'$	52.1 ± 1.7	1.8×10^{10}
$J/\psi o \gamma \eta$	11.08 ± 0.27	3.7×10^{9}
$J/\psi ightarrow \phi \eta'$	7.4 ± 0.8	2.5×10^{9}
$J/\psi ightarrow \phi\eta$	4.6 ± 0.5	1.6×10^{9}

XYZ Factory

			1 1	· ·
XYZ	Y(4260)	$Z_c(3900)$	$Z_c(4020)$	X(3872)
No. of events	10 ¹⁰	109	10 ⁹	5×10^{6}

- Belle-II : more statistics (50/ab)
- LHCb: much more statistics, huge bkg
- STCF : high detection efficiency, excellent resolution, kinematic constraining, low background, threshold production

Highlighted physics

• QCD and Hadronic Physics

- Exotic states and hadron spectroscopy
- Hadron structures
- Precision test of SM parameters
- Flavor Physics and CP violation
 - CKM matrix, $D^0 \overline{D}^0$ mixing
 - CP violation in lepton, hyperon, charm
- New Physics Search
 - Rare/Forbidden
 - Universality test
 - Dark particle search

Several benchmark processes analyses performed to optimize the detector design, and the physics potential

Charmonium(Like) Spectroscopy

platform to explore non-pQCD, Fruitful results in past decade, a new territory to study exotic hadrons, but controversy

- Belle-II : integrate eff. Lumi. between 4-5 GeV is 0.23 ab⁻¹ for 50 ab⁻¹ data
- STCF : scan in 4-5 GeV, 10 MeV/step, 10 fb⁻¹/point/year, 5 × Belle-II (50 ab⁻¹)
- STCF : much higher efficiency and low background than Belle-II

STCF : XYZ Factory

			1 1	· ·
XYZ	Y(4260)	$Z_c(3900)$	$Z_c(4020)$	X(3872)
No. of events	10 ¹⁰	10 ⁹	109	5×10^{6}

Large statistics and much wider CME data provide opportunity to perform precise study and to pin down the nature of Charmomium-like states

See Fengkun Guo's Snowmass talk

QCD and Hadronic Physics

Physics at STCF	Benchmark Processes	Key Parameters*
XYZ properties	$e^+e^- \rightarrow Y \rightarrow \gamma X, \eta X, \phi X$ $e^+e^- \rightarrow Y \rightarrow \pi Z_c, KZ_{cs}$	$\frac{N_{\rm Y(4260)/Z_c/X(3872)}}{10^{10}/10^9/10^6}$
Pentaquarks, Di-charmonium	$e^+e^- \rightarrow J/\psi p\bar{p}, \Lambda_c \overline{D}\bar{p}, \Sigma_c \overline{D}\bar{p}$ $e^+e^- \rightarrow J/\psi \eta_c, J/\psi h_c$	$\sigma(e^+e^- \rightarrow J/\psi p\bar{p})$ ~4 fb; $\sigma(e^+e^- \rightarrow J/\psi c\bar{c})$ ~10 fb (prediction)
Hadron Spectroscopy	Excited <i>cē</i> and their transition, Charmed hadron spectroscopy, Light hadron spectroscopy	$N_{J/\psi/\psi(3686)/\Lambda_c} \sim 10^{12}/10^{11}/10^8$
Muon g-2	$e^+e^- \rightarrow \pi^+\pi^-, \pi^+\pi^-\pi^0, K^+K^-$ $\gamma\gamma \rightarrow \pi^0, \eta^{(\prime)}, \pi^+\pi^-$	$\Delta a_{\mu}^{HVP} \ll 40 \times 10^{-11}$
R value, $ au$ mass	$e^+e^- \rightarrow inclusive$ $e^+e^- \rightarrow \tau^+\tau^-$	$\Delta m_{ au} \sim 0.012 \text{ MeV}$ (with 1 month scan)
Fragmentation functions	$e^+e^- \rightarrow (\pi, K, p, \Lambda, D) + X$ $e^+e^- \rightarrow (\pi\pi, KK, \pi K) + X$	$\Delta A^{Collins} < 0.002$
Nucleon Form Factors	$e^+e^- \rightarrow B\overline{B}$ from threshold	$\delta R_{EM} \sim 1\%$

*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

A unique Charm factory

Low backgrounds and high efficiency; missing technique and absolute measurement; **Quantum correlations** and **CP-tagging**

STCF data/year : 4×10^9 pairs of $D^{\pm,0}$, $10^8 D_s$ and Λ_c pairs

Highlighted Physics programs

- Precise measurement of (semi-)leptonic decay (f_D, f_{Ds}, CKM)
- $D^0 \overline{D}^0$ mixing, CPV
- Strong phase, decay parameters...
- Rear decay (FCNC, LFV, LNV....),
- Charmed baryons (J^{PC}, Decay modes, absolute BF)
- Excited charmed meson and baryon states: like D_J , D_{sJ} , Λ_c^* (mass, width, J^{PC}, decay modes)
- Light meson and hyperon spectroscopy studied in charmed hadron decays

See Xiaorui`s Snowmass talk

Charm meson leptonic Decays

Excellent platform for CKM elements and decay constants and universality test

	BESIII	STCF	Belle II
Luminosity	$2.93 \text{ fb}^{-1} \text{ at } 3.773 \text{ GeV}$	$1 \text{ ab}^{-1} \text{ at } 3.773 \text{ GeV}$	$50 ext{ ab}^{-1} ext{ at } \Upsilon(nS)$
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	$5.1\%_{\rm stat} 1.6\%_{\rm syst} [6]$	$0.28\%_{ m stat}$	_
$f_{D^+}~({ m MeV})$	$2.6\%_{\rm stat} 0.9\%_{\rm syst} [6]$	$0.15\%_{ m stat}$	
$ V_{cd} $	$2.6\%_{\rm stat} 1.0\%_{\rm syst}^{*} [6]$	$0.15\%_{ m stat}$	LQCD: 0.2%
$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$	$20\%_{\rm stat} \ 10\%_{\rm syst} \ [7]$	$0.41\%_{ m stat}$	– (0.1% expected)
$\mathcal{B}(D^+ \to \tau^+ \nu_\tau)$	21% + 13% + [7]	0.50%	
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	21/0stat 10/0syst [1]	0.0070stat	
Luminosity	$3.2 \text{ fb}^{-1} \text{ at } 4.178 \text{ GeV}$	1 ab^{-1} at 4.009 GeV	$50 ext{ ab}^{-1} ext{ at } \Upsilon(nS)$
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	$2.8\%_{\rm stat} 2.7\%_{\rm syst} [8]$	$0.30\%_{ m stat}$	$0.8\%_{ m stat}1.8\%_{ m syst}$
$f_{D^+_{\circ}}$ (MeV)	$1.5\%_{\rm stat} 1.6\%_{\rm syst} [8]$	$0.15\%_{ m stat}$	_
$ V_{cs}^{"} $	$1.5\%_{\rm stat} 1.6\%_{\rm syst} [8]$	$0.15\%_{\mathrm{stat}}$	
$f_{D_{s}^{+}}/f_{D^{+}}$	$3.0\%_{\rm stat} 1.5\%_{\rm syst} [8]$	$0.21\%_{ m stat}$	
$\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau)$	$2.2\%_{\mathrm{stat}}2.6\%_{\mathrm{syst}}^\dagger$	$0.24\%_{ m stat}$	$0.6\%_{\text{stat}} 2.7\%_{\text{syst}}$
$f_{D_s^+}$ (MeV)	$1.1\%_{\mathrm{stat}}1.5\%_{\mathrm{syst}}^{\dagger}$	$0.11\%_{\rm stat}$	_
$ V_{cs} $	$1.1\%_{\mathrm{stat}} 1.5\%_{\mathrm{syst}}^\dagger$	$0.11\%_{ m stat}$	LOCD : 0.2%
$\overline{f}_{D_s^+}^{\mu\& au}$ (MeV)	$0.9\%_{ m stat} 1.0\%_{ m syst}^\dagger$	$0.09\%_{ m stat}$	$0.3\%_{\text{stat}} 1.0\%_{\text{sym}}$ 1% expected)
$ \overline{V}_{cs}^{ec{\mu}\& au} $	$0.9\%_{ m stat}1.0\%_{ m syst}^{\dagger}$	$0.09\%_{ m stat}$	(0.1% expected)
$\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau)$	$3.6\% + 3.0\%^{\dagger}$	0.38%	0.9% + 3.2%
$\mathcal{B}(\overline{D_s^+ o \mu^+ u_\mu})$	3.070_{stat} 3.070_{syst}	0.00/0stat	0.3/0stat 0.2/0syst

* assuming Belle II improved systematics by a factor 2

Statistical uncertainties comparable with theory precision Systematic uncertainties are challenging

$D^0 - \overline{D}^0$ mixing and CPV

STCF provide an unique place for the study of $D^0 - \overline{D}^0$ mixing and CPV

by means of quantum coherence of D^0 and \overline{D}^0 produced through

 $\psi(3770) \rightarrow (D^0 \bar{D}^0)_{CP=-}$ or $\psi(4140) \rightarrow D^0 \bar{D}^{*0} \rightarrow \pi^0 (D^0 \bar{D}^0)_{CP=-}$ or $\gamma (D^0 \bar{D}^0)_{CP=+}$ as well as incoherent flavor specific D^0 samples: $D^{*+} \rightarrow D^0 \pi^+$

• Mixing rate $R_M = \frac{x^2 + y^2}{2} \sim 10^{-5}$ with 1 ab⁻¹ data at 3.773 GeV via

same charged final states $(K^{\pm}\pi^{\mp})(K^{\pm}\pi^{\mp})$ or $(K^{\pm}l^{\mp}v)(K^{\pm}l^{\mp}v)$

• $\Delta A_{CP} \sim 10^{-3}$ for KK and $\pi\pi$ channels

	1/ab @4 (only QC QC (very prelimina	009 MeV +incoherent) ary estimation)	BELLEII(50/ab) [PTEP2019,123C01]	LHC (SL [arXiv::	b(50/fb) Prompt) ^{1808.08865]}
<i>x</i> (%)	0.036	0.035	0.03	0.024	0.012
y(%)	0.023	0.023	0.02	0.019	0.013
r _{CP}	0.017	0.013	0.022	0.024	0.011
$\alpha_{CP}(^{\circ})$	1.3	1.0	1.5	1.7	0.48

- The only QC results: contains $D^0 \to K_S \pi \pi$, $D^0 \to K^- \pi^+ \pi^0$ and general CP tag decay channels; needs to be tuned
- The QC+incoherent results: combines coherent and incoherent D⁰ meson samples
- The BELLE II and LHCb results only contain incoherent $D^0 \rightarrow K_S \pi \pi$ channel

Precision Study of Charm Baryon

Era of precision study of the charmed baryon (Λ_c , Ξ_c and Ω_c) decays to help developing more reliable QCD-derived models in charm sector

• Hadronic decays:

to explore as-yet-unmeasured channels and understand full picture of intermediate structures in B_c decays, esp., those with neutron/ Σ/Ξ

- Semi-leptonic decays: to test LQCD calculations and LFU
- CPV in charmed baryon:

BP and BV two-body decay asymmetry, charge-dependent rate of SCS

- Charm-flavor-conserving nonleptonic decays: $\Xi_c \rightarrow \Lambda_c^+ \pi$, $\Omega_c^0 \rightarrow \Xi_c \pi$
- Electro-weak radiative decays : $\Sigma_c^+ \rightarrow \Lambda_c^+ \gamma$, $\Lambda_c^+ \rightarrow \Sigma \gamma$, $p\gamma$, $\Xi_c^{+/0} \rightarrow \Sigma^{+/0} \gamma$
- Rare decays: LFV, BNV, FCNC

STCF will provide very precise measurements of their overall decays, up to the unprecedented level of 10⁻⁶ ~10⁻⁷

Polarization of hyperons and CPV

Nature Phys. 15, 631–634 (2019)

1.31 B J/\psi events Quantum correlation in Λ pair

Parameters	This work	Previous results		
$lpha_{\psi}$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 ¹⁴		
$\Delta \Phi$	$(42.4\pm 0.6\pm 0.5)^\circ$	-		
α_	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 ¹⁶		
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	$-0.71 \pm 0.08 {}^{\rm 16}$		
$\bar{\alpha}_0$	$-0.692\pm0.016\pm0.006$	_		
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	$0.006 \pm 0.021 \ ^{\rm 16}$		
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	-		
2% level sensitivity for CPV test SM prediction:10 ⁻⁴ ~10 ⁻⁵				
	CP test A_{CP} =	$=\frac{\alpha_{-}+\alpha_{+}}{\alpha_{-}-\alpha_{+}}$ 19		

Polarization of hyperons and CPV

4 trillion J/ ψ events $\Rightarrow A_{CP} \sim 10^{-4}$

- Luminosity of STCF: \times 100
- No polarized beams needed
- Systematic is challenging

0.01 - 10 20 30

 A_{CP}

-0.01

10 trillion J/y

+ center value 1 σ 2 σ 3 σ

0.729

-0.004

v[⊕] −0.0045

-0.005

Flavor Physics and CPV

Physics at STCF	Benchmark Processes	Key Parameters*
CKM matrix	$D^+_{(s)} \rightarrow l^+ \nu_l, D \rightarrow P l^+ \nu_l$	$\delta V_{cd/cs} \sim 0.15\%; \ \delta f_{D/D_s} \sim 0.15\%$
γ/ϕ_3 measurement	$D^0 \to K_s \pi^+ \pi^-, K_s K^+ K^- \dots$	$\begin{array}{l} \Delta(\cos\delta_{\mathrm{K}\pi}) \sim 0.007;\\ \Delta(\delta_{\mathrm{K}\pi}) \sim 2^{\mathrm{o}} \end{array}$
$D^0 - \overline{D}^0$ mixing	$\begin{split} \psi(3770) &\to (D^0 \overline{D}{}^0)_{CP=-}, \\ \psi(4140) &\to \gamma (D^0 \overline{D}{}^0)_{CP=+} \end{split}$	$\Delta x \sim 0.035\%;$ $\Delta y \sim 0.023\%$
Charm hadron decay	$D_{(s)}, \Lambda_c^+, \Sigma_c, \Xi_c, \Omega_c$ decay	$N_{D/D_s/\Lambda_c} \sim 10^9 / 10^8 / 10^8$
γ polarization	$D^0 \to K_1 e^+ \nu_e$	$\Delta A'_{UD} \sim 0.015$
CPV in Hyperons	$J/\psi ightarrow \Lambda\overline{\Lambda}, \Sigma\overline{\Sigma,}\Xi^{-}\overline{\Xi}^{-}, \Xi^{0}\overline{\Xi}^{0}$	$\Delta A_{\Lambda} \sim 10^{-4}$
CPV in $ au$	$\tau \to K_s \pi \nu$, EDM of τ , $\tau \to \pi/K \pi^0 \nu$ for polarized e^-	$\Delta A_{\tau \to K_s \pi \nu} \sim 10^{-3};$ $\Delta d_{\tau} \sim 5 \times 10^{-19} \text{ (e cm)}$
CPV in Charm	$D^0 \to K^+ K^- / \pi^+ \pi^-,$ $\Lambda_c \to p K^- \pi^+ \pi^0 \dots$	$\Delta A_D \sim 10^{-3};$ $\Delta A_{\Lambda_c} \sim 10^{-3}$

*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Forbidden/Rare decay and NP

Physics at STCF	Benchmark Processes	Key Parameters* (U.L. at 90% C.L.)
LFV decays	$\begin{split} \tau &\to \gamma l, lll, lP_1P_2\\ J/\psi &\to ll', D^0 \to ll'(l' \neq l) \dots \end{split}$	$\mathcal{B}(\tau \to \gamma \mu / \mu \mu \mu) < 12/1.5 \times 10^{-9};$ $\mathcal{B}(J/\psi \to e\tau) < 0.71 \times 10^{-9}$
LNV, BNV	$D^+_{(s)} \to l^+ l^+ X^-, J/\psi \to \Lambda_c e^-,$ $B \to \overline{B} \dots$	$\mathcal{B}(J/\psi\to\Lambda_c e^-)<10^{-11}$
Symmetry violation	$\eta^{(\prime)} \rightarrow l l \pi^0, \eta^\prime \rightarrow \eta l l \dots$	$ \mathcal{B}(\eta' \rightarrow ll/\pi^0 ll) < 1.5/2.4 \times 10^{-10} $
FCNC	$\begin{split} D \to \gamma V, D^0 \to l^+ l^-, e^+ e^- \to D^*, \Sigma^+ \to \\ p l^+ l^- \dots \end{split}$	$\mathcal{B}(D^0 \rightarrow e^+ e^- X) < 10^{-8}$
Dark photon, millicharged	$e^+e^- \to (J/\psi) \to \gamma A' (\to l^+l^-) \dots$ $e^+e^- \to \chi \bar{\chi} \gamma \dots$	Mixing strength $\Delta \epsilon_{A'} \sim 10^{-4}$; $\Delta \epsilon_{\chi} \sim 10^{-4}$

*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Please find more details in backup slides

Circular Electron Positron Collider (CEPC)

- □ The CEPC aims to start operation in 2030's, as a Higgs (Z/W) factory
- To run at $\sqrt{s} \sim 240$ GeV, above the ZH production threshold for 4 M Higgs; Tera Z @ 91 GeV, 100M W pair, and possible $t\bar{t}$ pair threshold upgrade
- Higgs, EW, flavor physics & QCD, BSM physics (eg. dark matter, EW phase transition, SUSY, LLP, ….)
- **D** Possible Super pp Collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the future.

http://cepc.ihep.ac.cn/

CEPC Roadmap and Schedule (ideal)

rs)

- 2013-2025: Key technology R&D, from CDR to TDR, Site selection, Intl. Collab. etc.
- CEPC Project Timeline

Nb₃Sn+HTS or HTS

• 15 T SC dipole magnet & HTS cable R&D

HTS Magnet R&D Program

CEPC Major Milestones

CEPC Accelerator Design Improvement & TDR

- 100 km double ring design (30 MW SR power, upgradable to 50MW).
- Switchable between H & Z, W modes without hardware change (magnet switch).
- New baseline for Linac (C-band, 20GeV).

CEPC SCRF Test Facility

CEPC SCRF Test Facility is available : Beijing Huairou (4500m²)

New SC Lab Design (4500m²)

SC New Lab is available in 2021

Crygenic system hall

Vacuum furnace (doping & annealing)

Nb3Sn furnace Nb/C

Temperature & X-ray mapping system Second sound cavity quench detection system

y Helmholtz coil for em cavity vertical test Vertical test dewars

Horizontal test cryostat

28

Nb/Cu sputtering device Cavity inspection camera and grinder 9-cell cavity pre-tuning machine

CEPC R&D: High Q SCRF Cavities

- > 1.3 GHz 9-cell SCRF cavity for booster: $Q_0 = 3.4E10 @ 26.5 MV/m$
- > 650 MHz 2-cell SCRF cavity for collider ring: $Q_0 = 6.0E10 @ 22.0 MV/m$
- SCRF cavities for both booster & collider ring reach CEPC design goal

adopted to reach $Q_0 = 3.4E10 @ 26.5 \text{ MV/m}$

Q₀ = 6.0E10 @ 22.0 MV/m

CEPC R&D: High Efficiency Klystrons

- The 1st prototype finished fabrication & passed the max. power test. Output power reaches 700 kW in CW mode, 800 kW in pulsed mode.
 Design efficiency is 65%, achieved efficiency ~ 62%.
- The 2nd klystron prototype is manufactured and under test at PAPS, design eff is ~ 77%, achieved efficiency ~70%.
- □ Multi-beam Klystron design is finished, design efficiency is ~ 80.5%.
- High efficiency Klystron helps to reduce electricity consumption.

The 2nd Klystron (under test)

CEPC at 800 RMB/MWh and 6000 hours/year **M RMB** 700 Save Money **130M RMB** 600 1 year bill, **90 M RMB** 500 electricity 400 300 200 Plot Area Excessive 100 Multi-beam Klystron 100% Efficiency, %

The 1st Klystron (tested)

HTS SC Magnet (>12T)

Domestic SC dipole magnet exceeded 12T (IHEP, June, 2021)

Conceptual Detector Designs

Scint Glass PFA HCAL	Advantage: Cost efficient, high density Challenges : Light yield, transparency,	Solenoid Magnet (3T / 2T) Between HCAL & ECAL				
	massive production.	Advantage: the HCAL absorbers act as part	Det	Technology	Det	Technology
		of the magnet return yoke.		JadePix		Crystal ECAL
		resolution (e.g. BMR); stability.	tex	TaichuPix		Si+W ECAL
			I Ve	Arcadia	er	Scint+W ECAL
		Transverse Crystal bar ECAL	Pixe	CPV(SOI)	met	Scint AHCAL
		Advantage: better π^0/γ reconstruction.		Stiching	alori	ScintGlass AHCAL
		channels; compatible with PFA calorimeter;		ТРС	Ű	RPC SDHCAL
		maintain good jet resolution.	DID	CEPCPix		MPGD SDHCAL
		A Drift chamber	r &	Drift chamber		DR Calorimeter
		that is optimized for PID	cke	PID DC	2	Scintillation Bar
		Advantage: Work at high luminosity Z runs	Tra	LGAD	ony	RPC
		Challenges : sufficient PID power; thin		Silicon Strip	2	μ-Rwell
Muon	+Yoke Si Tracker Si Vertex	enough not to anect the moment resolution.			ä	SiTrk+Crystal ECAL
					Lu	SiTrk+SiW ECAL

CEPC R&D: Machine Detector Interface (MDI)

Crossing angle: 33 mrad Focal length: 2.2 m

Final focusing magnets (QD0, QF1) with Segmented Anti-Solenoidal Magnets

2021 Workshop on CEPC Detector & MDI Mechanical Design, Oct.22-23

CEPC R&D: Silicon Pixel Chips

Resolution 5 microns, 53mW/cm²

Develop **CEPCPix** for a CEPC tracker basing on ATLASPix3 CN/IT/UK/DE TSI 180 nm HV-CMOS process

Arcadia by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS

CPV4 (SOI-3D), 64×64 array

~21×17 µm² pixel size

DO-D

CEPC R&D: Time Projection Chamber

ode TPC Prototype + UV laser beams

Low power FEE ASIC

36

Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.

CEPC R&D: PFA Calorimeters

CEPC R&D: Calorimeters

Scintillator-W ECAL Prototype

Scintillator + SiPM AHCAL Prototype

CEPC R&D: High Granularity Crystal ECAL

Goal

- Boson Mass Resolution < 4%
- Better BMR than ScW-ECAL
- Much better sensitivity to γ/e , especially at low energy.

800

500-

400 F

300

Bench Test

Full Simulation Studies

 $H \rightarrow \gamma \gamma$

Crystal ECAL

BMR = 1.2%

Performance with photons

BMR of SiW ECAL ~ 2.3%

Reconstructed Mass of Higgs

Entries

Mean

Std Dev

z² / ndf

Constant

Prob

Mean

Signa

+ Optimizing PFA for crystals

laser collimator

Performance with jets

Timing at two ends for positioning along bar.

Significant reduction of number of channels.

Conceptual Design

Performance Test BGO_801010_SiPM_ESR_Th30mV_4x4Window_ch0 Entries 100011 421.6 Mean <u>a</u> 2000 Std Dev 234.2 Underflow 2331 1800 Overflow 136 χ^2 / ndf 25.31/24 1600 E.R. = 23.71% Prob 0.3891 1400 Constant 1375 ± 10.3 Mean 663.5 ± 1.1 1200 Sigma 66.81 ± 1.03 1000F 800 155.60 p.e. 600 400 H 200 200 400 600 1000 1200 Energy [keV]

CEPC R&D: New HCAL with Scintillating Glass Tiles

Tiles for AHCAL (30x30x3mm)

'SiPM-on-Tile" design for HCAL

 $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV

50

100

InvM[GeV]

150

200

Goal Better hadronic energy resolution

Italian groups and IHEP colleagues participated the test beam at CERN.

International Efforts

✤The 7th annual IAC meeting was held on Nov 1-5, 2021.

- International Accelerator Review Committee (IARC), and International Detector R&D Review Committee (IDRDRC) started operating in 2019.
- Currently the CEPC study group consists of ~1/3 international members. By year 2025-26, two international experiment collaborations should be formed.
- International collaborating R&D through different channels, including CALICE, LCTPC, RD*, …
- The R&D research are supported by MOST, NSFC, CAS, institutes, local government, ... International workshops (with emphasis on CEPC
 - In China: Beijing (2017-2019), Shanghai (2020.10),

Nanjing (2021.11 online, 2022.10)

Annual HKUST-IAS HEP program (since 2015)

- In Europe: Rome (2018.05), Oxford (2019.04), Marseille
- In USA : Chicago (2019.09), DC (2020.04 / online)

CEPC Collaboration with Industry (CIPC)

CEPC 650MHz Klystron at Kunshan Co.

CIPC was established in Nov. 2017, there are 70+ companies join the CIPC so far.

CERN HL-LHC CCT SC magnet

CEPC Detector SC coil winding tools at KEYE Company (Diameter ~7m)

 1) Superconduting materials (for cavity and for magnets)
 2) Superconductiong cavities
 3) Cryomodules
 4) Cryogenics

- 5) Klystrons
- 6) Magnet technology
- 7)Vacuum technologies
- 8) Mechanical technologies

CEPC long magnet measurement coil

- 9)Electronics 10) SRF
- 10) 367
- 11) Power sources
- 12) Civil engineering
- 13) Precise machinery
- •••••

More than 40 companies joined in first phase of CIPC, and 70 companies now.

CEPC Physics Program (White Papers)

CEPO	C Operation mode	ZH	Z	W ⁺ W ⁻	ttbar
	\sqrt{s} [GeV]	~ 240	~ 91.2	~ 160	~ 360
F	Run time [years]	7	2	1	-
CDR (30MW)	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
(,	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	~10 ⁸	-
Run time [years]		10	2	1	5
	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	27	0.8
Latest (50MW)	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	20	96	7	1
	Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	~10 ⁸	5×10 ⁵

Physics similar to FCC-ee, ILC, CLIC

- ✤ 2019.3 Higgs White Paper published (CPC V43, No. 4 (2019) 043002)
- 2019.7 Workshop@PKU: EW, Flavor, QCD working groups formed
- ✤ 2020.1 Workshop@HKUST-IAS: Review progress, EW draft ready
- 2021.4 Workshop@Yangzhou: BSM working group formed

CEPC Physics Program: Snowmass Lol

HD 45.41 🌾 🚳	See 19 19 19 19 19 19 19 19 19 19 19 19 19		* 1]ŧ ■ ∎ 5:01		Submitter	Title
<	聊天成页(132) 1 1		Xin	EF01 Higgs boson CP properties at CEPC			
Q搜索					2	Yanping	EF01 Measurement of branching fractions of Higgs hadronic decays
		A111 - 1111	San Ar		3	MJRM & Shu	EF02 Study of EWPT in Exotic Higgs decays with CEPC detector simulation
曼曼奇	王连涛	方亚泉	庄胥爱	一世の	4	Mingrui Zhao	EF03 Feasibility study of CP violation phase Phi-s measurement via Bs->J/psi Phi at CEPC
	-				5	Peiwen Wu	EF03 Probing top quark FCNC couplings at future electron positron collider
	A. 91	1.4			6	Lingfeng Li	EF03 Searching for Bs->Phivv and other b->svv processes at CEPC
刘真	GLI	杨思奇	张昊	李一鸣	7	Siqi Yang	EF04 Measurement of leptonic effective weak mixing angle at CEPC
2	SA	SPACEX		0	8	Jiayin Gu	EF04 Probing new physics with measurement of ee->WW at CEPC with optimal observables
梁志均	蛋儿蛋儿	郑太范	賴培築	王伟	9	Bo Li	EF04 Measurement of Rb in hadronic Z decays at the CEPC
	B C				10	Zhao Li	EF04 NNLO electroweak correction to Higgs and Z associated production at future Higgs factory
朱华星	朱宏博	廖红波	I_U	张华桥	11	Shuang-Yong Zhou	EF04 Positivity bounds on quartic-gauge-boson couplings
1			NS2		12	Qin qin	EF05 Exclusive Z decay
Cen	史欣	赵明锐	Wang	XCLou	13	Zhao Li	EF05 NNLO EW correction to Higgs and Z associated production at future Higgs factory
1	Ada	4 RP			14	Yang Zhang	EF08 SUSY Global fits with future colliders using GAMBIT
Hai-B	李衡讷	李钊	本 教	「「「「「「」」	15	Tianjun li	EF08 Probing SUSY and DM at CEPC, FCC & ILC
	19 10 10 10	F D		CH BCKE	16	Mengchao Zhang	EF09 Search for Asymmetric DM model at CEPC by displaced lepton jets
Control				and the	17	Peiwen Wu	EF09 Search for t+j+MET signals from DM models at future electron positron collider
高俊	刘言东	lovecho	武雷	王健	18	Xin Shi & Weiming	EF09 DM via Higgs portal at CEPC
	A	1			19	Kepan Xie	EF10 Lepton portal DM, Gravitational waves and collider phenomenology
刘佳	于江浩	于福升	杨李林	王小平	20	Taifan Zheng	RF1 Exploring NP with Bc->Tauv

✓ Many talks presented at Snowmass meetings

arXiv: 2205.08553

✓ Many relevant performance studies, and extra physics analyses

CEPC Physics Program: Higgs and EW

	$240{ m GeV}$	$V, 20 \text{ ab}^{-1}$	$360{ m GeV},1~{ m ab}^{-1}$		
	ZH	\mathbf{vvH}	ZH	vvH	eeH
inclusive	0.26%		1.40%	\	\
$H \rightarrow bb$	0.14%	1.59%	0.90%	1.10%	4.30%
$H \rightarrow cc$	2.02%		8.80%	16%	20%
$ m H{ ightarrow} m gg$	0.81%		3.40%	4.50%	12%
$H \rightarrow WW$	0.53%		2.80%	4.40%	6.50%
$H \rightarrow ZZ$	4.17%		20%	21%	
$H\to\tau\tau$	0.42%		2.10%	4.20%	7.50%
$H ightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$Br_{upper}(H \to inv.)$	0.07%				
Γ_H	1.	65%		1.10%	

(Observable	current	precision	CEPC pre	ecision (Stat. Unc.)	CEPC runs	main systematic
	Δm_Z	2.1 MeV	/ [37–41]	$0.1 { m Me}$	eV (0.005 MeV)	${\cal Z}$ threshold	E_{beam}
	$\Delta\Gamma_Z$	2.3 MeV	/ [37–41]	0.025 M	leV (0.005 MeV)	Z threshold	E_{beam}
ſ	Δm_W	$9 { m MeV}$	[42-46]	$0.5 { m M}$	eV (0.35 MeV)	$WW\ {\rm threshold}$	E_{beam}
L	$\Delta\Gamma_W$	$49 { m MeV}$	[46-49]	2.0 M	IeV (1.8 MeV)	WW threshold	E_{beam}
	Δm_t	0.76 G	eV [50]	O	(10) MeV ^a	tt threshold	
	ΔA_e	4.9×10^{-3}	[37, 51-55]	1.5×10^{-1}	$0^{-5} (1.5 \times 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
	ΔA_{μ}	0.015	[37, 53]	3.5×10^{-3}	$0^{-5} (3.0 \times 10^{-5})$	Z pole $(Z \to \mu \mu)$	point-to-point Unc.
Г	ΔA_{τ}	4.3×10^{-3}	[37, 51–55]	7.0×10	$^{-5}(1.2 \times 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
	D0 I		80478	± 83		SM –	
	CDF I		80432	± 79			•
	DELP	ΉI	80336	± 67			
	L3		80270	± 55		- .	
	OPAL	-	80415	± 52			•
	ALEP	Н	80440	± 51			
	D0 II		80376	± 23			
	ATLA	S	80370	± 19			
	CDF	2012	80387	± 19)		
	LHC	0	80354	± 32	2		
	CDF I		80433	± 9			•
'99	$\frac{1}{300}$	80000 · μe) <	8010 7.5 × 10 ⁻⁷ 1	$0 \frac{1}{10^{-8} - 10^{-1}}$	$\mathcal{O}(10^{-9})$	300 804	00 80500 D limited
	$BR(Z \to \pi$	$(\pi^{+}\pi^{-})$			$\mathcal{O}(10^{-10})$	$\sigma(ec{p}_{ ext{track}})$]	imited, good PID
	${ m BR}(Z o \pi^+$	$^{+}\pi^{-}\pi^{0})$			$\mathcal{O}(10^{-9})$		$\tau\tau$ bkg
	$BR(Z \rightarrow .$	$J/\psi\gamma)$ <	1.4×10^{-6}		$10^{-9} - 10^{-10}$	ll	$\gamma + \tau \tau \gamma$ bkg
	$BR(Z \rightarrow$	$(\rho\gamma) <$	2.5×10^{-5}		$O(10^{-9})$	$\tau \tau \gamma$ bkg.	$\sigma(p_{\text{track}})$ limited

Discovery Potential for New Physics

Significantly better sensitivity for dark matter and selected Higgs exotic decays than HL-LHC

Summary

- **D** Two electron-positron colliders proposed by Chinese scientists
 - ➢ CEPC: Ecm = 90-360 GeV, peaking L > (5, 115)×1034 cm-2s-1 at (240, 91) GeV
 - > STCF: Ecm = 2 7 GeV, peaking $\mathcal{L} > 5 \times 1034$ cm-2s-1
 - > Both aim precision study of the SM, as well as the new physics searches
 - > Milestones: CDRs released
 - > Active R&D on machine, detector, physics, and MDI ongoing
 - > Made major progress + breakthroughs in common technologies
 - > Industrial involvements
 - > International collaboration and engagement
- □ Efforts on "科学院大科学装置规划" to realize at least one of them
- □ The SM has been "normal science" for 50+ years, we need new paradigms in our field
- □ China should/could play a more important role in the future

"The greater danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieving our mark" (*Michelangelo*)

Aim high or we will not realize the potential of our field, discovery will be stalled and we betray ourselves and the next generation.

"取法于上,仅得为中,取法于中,故为其下"——李世民《帝范》

Photo credit: Michael Hoch/CERNA Roadmap Snowmass 21 -- I. Shipsey

Extras

Tau-Charm Factory in China **30 yields history , Successful and fruitful physics results**

1990

Mnn-2mn (GeV)

BEPCII/BESIII (10³³cm⁻²s⁻¹)

- Successful operation for 13 years, but potential for further upgrade
- BEPCII/BESIII lifetime is less than 10 years.
- Some key scientific questions require higher luminosity and wider CME.

Electromagnetic Form Factors

Fundamental properties of the nucleon, connected to charge and magnetization distributions, crucial testing ground for models of the nucleon internal structure

STCF provide opportunities for systematical and precise measurements, and to understand the nature the nucleons

LFV in τ decays

LFV is a sensitive probe for NP, τ decays are an ideal processes for LFV

τ production at STCF :

- Peaking x-Sec in 4-5 GeV
- At 4.26 GeV, tau pair number/year: 3.5×10⁹
- $e^+e^- \rightarrow \gamma \tau^+ \tau^-$ is not the main background
- Improved π/μ mis-id rate at STCF
- Entangled topology of $e^+e^-
 ightarrow au^+ au^-$
- Large $e^+e^- \rightarrow q\overline{q}$ background at low c.m.e

LFV decay of $\tau \rightarrow \gamma \mu / lll$

LFV in J/ψ decays

 The cLFV decays of vector mesons V → l_il_j are also predicted in various of extension models of SM:

 $\mathcal{B}_{UL}^{90}(J/\psi \to e\mu) < 10^{-13}$ $\mathcal{B}_{UL}^{90}(J/\psi \to e(\mu)\tau) > 10^{-9}$

Taking efficiency from BESIII, 1 trillion
 J/ψ result the upper limit to be:

 $\mathcal{B}_{IIL}^{90}(J/\psi \to e\mu) < 3.6 \times 10^{-11}$

 $\mathcal{B}_{UL}^{90}(J/\psi \to e\tau) > 7.1 \times 10^{-10}$

• The $\mathcal{B}_{UL}^{90}(J/\psi \rightarrow e\tau)$) can be further **optimized** with better PID.

CEPC Financial Model

Funding Sources	Financial Model #1 (RMB)	Financial Model #2 (RMB)
Central Government	30B	6-10B
Local Government	Land, Infrastructure	25-18B Land, Infrastructure
International Partners	1-5B	1-5B
Companies & Donations	0-3B	0-3B
Total Budget	36B	36B

In Oct., 2021: Institute of Science and Technology Strategic Consulting, CAS is carrying out an independent assessment of Social Cost Benefit Analysis for the CEPC project, the report will be available in this year.

CEPC Accelerator TDR Design Improvement

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs		2			
Beam energy (GeV)	120	80	4	5.5	
Circumference (km)		100			
Synchrotron radiation	1.73	0.34	0	036	
loss/turn (GeV)	1.75	0.54	0.	030	
Crossing angle at IP (mrad)		16.5 ×	2		
Piwinski angle	3.48	7.0	2	3.8	
Particles /bunch Ne (1010)	15.0	12.0	5	3.0	
Bunch number	242	1524	12000 (10% gap)	
Bunch spacing (ns)	680	210	1	25	
Beam current (mA)	17.4	87.9	40	51.0	
Synch. radiation power (MW)	30	30	1	6.5	
Bending radius (km)		10.7			
Momentum compaction (10-5)		1.11			
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance x/y (nm)	1.21/0.0024	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_x/\sigma_y(\mu m)$	20.9/0.06	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters 5/5	0.018/0.109	0.013/0.123	0.004/0.06	0.004/0.079	
RF voltage VRF (GV)	2.17	0.47	0	.10	
RF frequency fRF (MHz)		650			
Harmonic number		21681	6		
Natural bunch length $\sigma_{\overline{z}}$ (mm)	2.72	2,98	- cil	n –	
Bunch length of (mm)	4.4		Jesis		
Damping time $\tau_x / \tau_y / \tau_E$ (ms)	AC	oline .	049.5/84	19.5/425.0	
Natural Chromaticit	n Bas	1101	-491/-1161	-513/-1594	
Betatra	N P	363.10/30	55.22		
3 2018 0-	0.065	0.040	0.	028	
H (2 cell)	0.46	0.75	1	.94	
Natural energy spread (%)	0.100	0.066	0.	038	
Energy spread (%)	0.134	0.098	0.	080	
Energy acceptance	1.35	0.90	0	.49	
requirement (%)	2.00		0.49		
Energy acceptance by RF (%)	2.06	1.47	1.70		
Photon number due to beamstrahlung	0.082	0.050	0.023		
Beamstruhlung lifetime /quantum lifetime [†] (min)	80/80	>400			
Lifetime (hour)	0.43	1.4	4.6	2.5	
F (hour glass)	0.89	0.94	0	.99	
Luminosity/IP (1034 cm2s1)		10	17	32	

	(ttbar)	Higgs	W	Z
Number of Ips		2		
Circumference [km]		100.	0	
SR power per beam [MW]		30		
Half crossing angle at IP [mrad]		16.5	5	
Bending radius [km]		10.7	7	
Energy [GeV]	180	120	80	45.5
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037
Piwinski angle	1.21	5.94	6.08	24.68
Bunch number	35	249	1297	11951
Bunch population [10^10]	20	14	13.5	14
Beam current [mA]	3.3	16.7	84.1	803.5
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	27/1.4
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/36 Design		0 /35
Bunch length (SR/total) [mm]	2.2/2.9	2.20	red De-	2.5/8.7
Energy spread (SR/total) [%]	0.15/0.20	1 Improv	0.07/0.14	0.04/0.13
Energy acceptance (DA/RF) [%]	2.3. 204		1.2/2.5	1.3/1.7
Beam-beam parameters (ksix/ksiy)	0.071	0.015/0.11	0.012/0.113	0.004/0.127
RF voltage [GV]	10	2.2	0.7	0.12
RF frequency [MHz]	650	650	650	650
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202
Beam lifetime [min]	18	12.3	55	80
Hour glass Factor	0.89	0.9	0.9	0.97
Luminosity per IP[1e34/cm^2/s]	0.5	(5.0)	16	
		67% ①		259% ①

[†] include beam-beam simulation and real lattice

CEPC Accelerator TDR Design (Upgrade)

	Higgs	w	Z	ttbar			
Number of IPs			2				
Circumference [km]		100.0					
SR power per beam [MW]	SR power per beam [MW] 50						
Half crossing angle at IP [mrad]			16.5				
Bending radius [km]	10.7						
Energy [GeV]	120	80	45.5	180			
Energy loss per turn [GeV]	1.8	0.357	0.037	9.1			
Piwinski angle	5.94	6.08	24.68	1.21			
Bunch number	415	2162	19918	58			
Bunch spacing [ns]	385	154	15(10% gap)	2640			
Bunch population [10 ¹⁰]	14	13.5	14	20			
Beam current [mA]	27.8	140.2	1339.2	5.5			
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71			
Phase advance of arc FODOs [degree]	90	60	60	90			
Beta functions at IP (bx/by) [m/mm]	0.33/1	0.21/1	0.13/0.9	1.04/2.7			
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7			
Beam size at IP (sx/sy) [um/nm]	15/36	13/42	6/35	39/113			
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9			
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20			
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6			
Beam-beam parameters (xx/xy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1			
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)			
RF frequency [MHz]			650				
Beam lifetime [min]	20	55	80	18			
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	26.6	191.7	0.8			

Higher SR power of 50MW, the Lumi. will increase ~66%.

CEPC R&D: SDHCAL

MOST 1: RPC and MPGD (RWELL) R&D, MIP Eff > 95%

GRPC 1m x 1m (SJTU) JINST 16 (2021) P12022

RWELL 0.5m x 1m (USTC+IHEP)

R&D Plan: 5-D SDHCAL (X, Y, Z, E, Time) - MRPC + fast timing PETIROC ASIC (~40 ps)

Confusion Matrix ZH Decay & ZZ Bkg

Event classification with
 Graph neural network
 achieves an average
 accuracy of ~89%

