

QCD phase diagram V.S. Holographic QCD

Song He

Center for Theoretical Physics and College of Physics, Jilin University

@中国高能物理年会-2022年8月10日

w/. Rong-Gen Cai, Li Li, Yuan-Xu Wang, 2201.02004,

1

Outline

I. Motivations & hQCD

II. Holographic QCD model (hQCD)

III. Confront with QCD Phase diagram

IV. Summary

Motivations

A schematic view of QCD Phase diagram

Status of searching CEP

Schwinger–Dyson equation (DSE), 2109.09935 [hep-ph], 1607.01675 [hep-ph], 1011.2876 [nucl-th], 1403.3797 [hep-ph], 1405.4762 [hep-ph]], 2002.07500 [hep-ph]]. Nambu–Jona-Lasinio models (NJL, PNJL), arXiv:1801.09215 [hep-ph]], Nucl. Phys. A 504 (1989), 668-684 Functional renormalization group (FRG). 1909.02991 [hep-ph]], 1709.05654 [hep-ph]].

Motivations

I. Low energy QCD is strong coupled system

P. Braun-Munzinger and J. Wambach, Rev. Mod. Phys. 81 (2009), 1031-1050 [arXiv:0801.4256 [hep-ph]].

S. Gupta, X. Luo, B. Mohanty, H. G. Ritter and N. Xu, Science 332 (2011), 1525-1528 [arXiv:1105.3934[hep-ph]].

II. Finite density QCD v.s. sign Problem

O. Philipsen, Prog. Part. Nucl. Phys. 70 (2013), 55-107 [arXiv:1207.5999 [hep-lat]].

III. AdS/QCD offers a practical approach

O. DeWolfe, S. S. Gubser and C. Rosen, Phys. Rev. D 84 (2011), 126014 [arXiv:1108.2029 [hep-th]]. R. G. Cai, S. He and D. Li, JHEP 03 (2012), 033 [arXiv:1201.0820 [hep-th]].

- U. Gursoy, M. Jarvinen and G. Nijs, Phys. Rev. Lett. 120 (2018) no.24,242002 [arXiv:1707.00872 [hep-th]].
- J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti and R. Rougemont, Phys. Rev. D 104 (2021) no.3, 034002 [arXiv:2102.12042[nucl-th]].

Intro AdS/QCD

AdS/QCD

hQCD model

HQCD model for 2+1 flavor system

Einstein-Maxwell-Dilaton system

Motivation

To cover the degree of freedom in QCD phase Diagram. Quarks (chemical potential) & gluons(dilaton potential)

Gravity Action

HQCD model

Boundary Stress Rong-Gen Cai, Song He, Li Li, Yuan-Xu Wang, 2201.02004 Tensor $-\Omega V = T(S+S_{\partial})_{on-shell}$ **On-Shell Action** $S_{\partial} = \frac{1}{2\kappa_{N}^{2}} \int_{r \to \infty} dx^{4} \sqrt{-h} \left[2K - 6 - \frac{1}{2}\phi^{2} - \frac{6c_{1}^{4} - 1}{12}\phi^{4}\ln[r] - b\phi^{4} + \frac{1}{4}F_{\rho\lambda}F^{\rho\lambda}\ln[r] \right]$ c_1, c_2, c_3, c_4, c_5 Effective Newton constant κ_N^2 Scalar source ϕ_s +Renormalization **b** Boundary stress tensor $T_{\mu\nu} = \lim_{r \to \infty} \frac{2}{\sqrt{-\det a}} \frac{\delta(S+S_{\partial})_{on-shell}}{\delta a^{\mu\nu}},$ $= \frac{1}{2\kappa_N^2} \lim_{r \to \infty} r^2 \Big[2(Kh_{\mu\nu} - K_{\mu\nu} - 3h_{\mu\nu}) - (\frac{1}{2}\phi^2 + \frac{6c_1^4 - 1}{12}\phi^4 \ln[r] + b\phi^4)h_{\mu\nu} \Big]$ $-\left(F_{\mu\rho}F_{\nu}^{\ \rho}-\frac{1}{4}h_{\mu\nu}F_{\rho\lambda}F^{\rho\lambda}\right)\ln[r]\right],$

Prediction of hQCD model

Predictions of thermal dynamical quantities at finite chemical potential

S. Bors' anyi, etc., Phys. Rev. Lett. 126 (2021) no.23, 232001 [arXiv:2102.06660 [hep-lat]]

*[1812.00385v2]: Gubler P, Satow D. Recent progress in QCD condensate evaluations and sum rules.

Predictions of QCD phase diagram

Induced gravitational wave

Strong first order phase transition will result in the production of GWs:

bubble collision + sound wave + MHD turbulence GWs are dominated by **sound waves** with

energy spectrum

$$h^{2}\Omega_{GW}(f) = 8.5 \times 10^{-6} \left(\frac{100}{g_{n}}\right)^{1/3} \left(\frac{\kappa\alpha}{1+\alpha}\right)^{2} \times \left(\frac{H_{n}}{\beta}\right) v_{w} S_{SW}(f) \,.$$

 α : phase transition strength parameter

 v_w : bubble wall terminal velocity

 $\frac{\beta}{H_n}$: the inverse time duration of the phase transition

 H_n : Hubble rate at the nucleation temperature T_n

 g_n : the number of degrees of freedom

 κ : the fraction of bulk kinetic energy relative to the

available vacuum energy.

Stochastic GW spectrum from the first order QCD phase transition

 $(\mu, T, \alpha) = (560 \text{ MeV}, 104.71 \text{ MeV}, 0.13) \text{ (red band)} \text{ and } (1000 \text{ MeV}, 49.53 \text{ MeV}, 0.33) \text{ (blue band)}.$ The upper curve in each band is for $\beta/Hn = 4$ and the lower curve is for $\beta/Hn = 80$. The GW energy spectrum from our hQCD model is within the projected sensitivity of IPTA and SKA, thus can be potentially detected in the near future.

- I. Propose a hQCD model on quantitative level to describe QCD phase diagram.
- **II. EOS confront with lattice simulations at zero/non-zero chemical potential.**
- **III.Realize QCD CEP and quantitatively agrees with effective field results.**
- IV.Stochastic GW spectrum induced by QCD phase transition predicted.

Thank you !

