

Fluctuations of conserved charges in strong magnetic fields

Jun-Hong Liu(刘俊宏) Central China Normal University(华中师范大学)

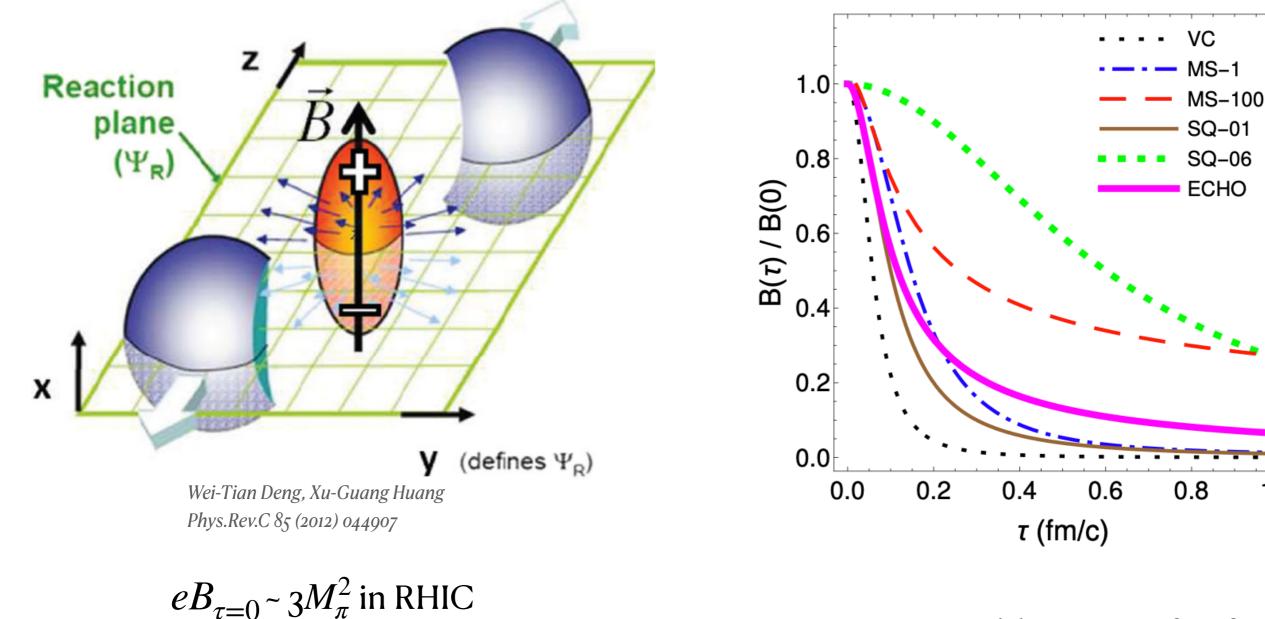
H.-T. Ding, S.-T. Li, Q. Shi, X.-D. Wang, Eur.Phys.J.A 57 (2021) 6, 202

and work in progress

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

大连, 辽宁师范大学, 2022.8.10

Strong magnetic fields in heavy-ion collisions

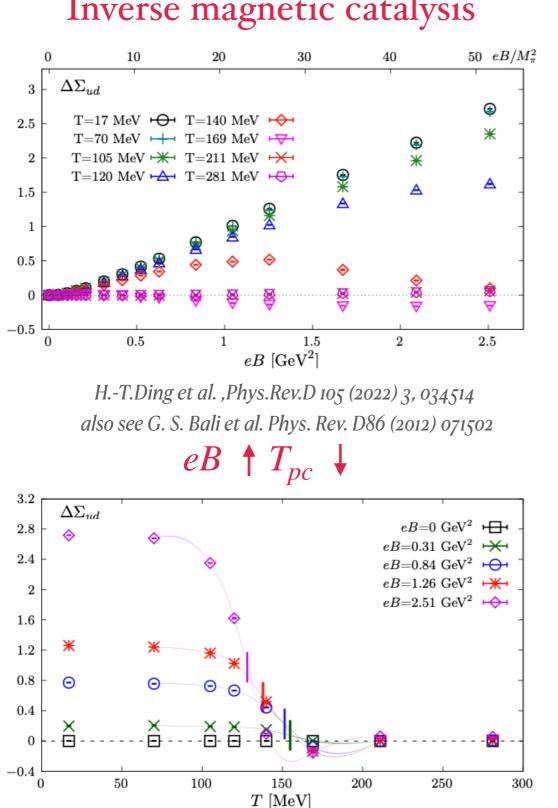


Anping Huang et al.Phys.Lett.B 777 (2018) 177-183 A. Bzdak et al. Physics Reports 853 (2020) 1–87

 $eB_{\tau=0} \sim 40 M_{\pi}^2$ in LHC

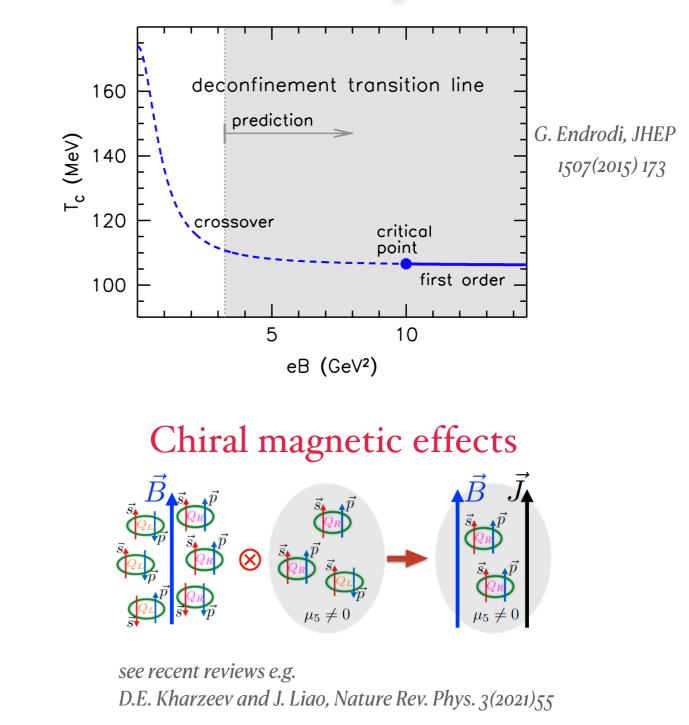
1.0

eB induced effects

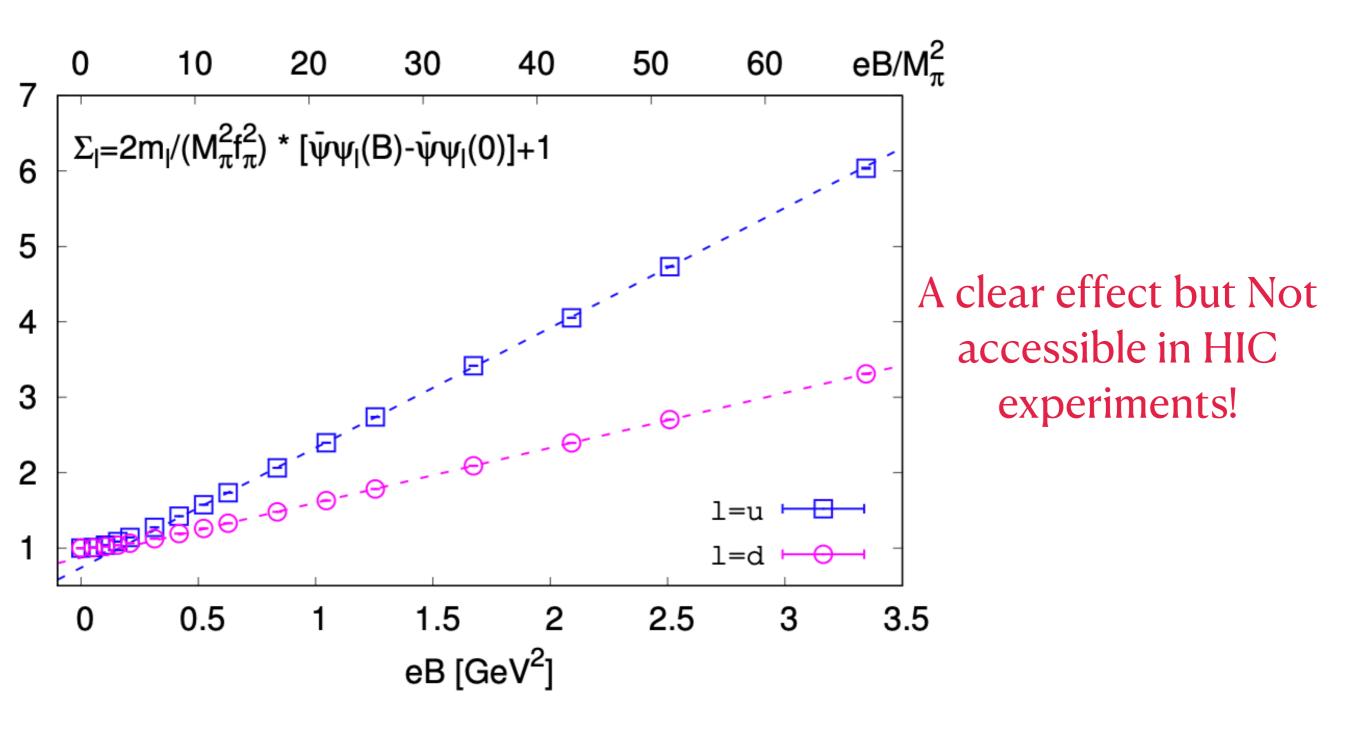


Inverse magnetic catalysis

CEP in T-eB plane



Isospin symmetry breaking at $eB \neq 0$ manifested in chiral condensates



H.-T.Ding, S.-T. Li, A. Tomiya, X.-D. Wang and Y. Zhang, PRD 126 (2021) 082001 See also in reviews e.g. M. D'Elia, Lect.NotesPhys.871(2013)181

2022/08/10

Fluctuations of net baryon number, electric charge and strangeness

Taylor expansion of the QCD pressure: Gave

Allton et al., Phys.Rev. D66 (2002) 074507 Gavai & Gupta et al., Phys.Rev. D68 (2003) 034506

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln \mathscr{Z}\left(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s\right) = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i!j!k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

Taylor expansion coefficients at $\mu = 0$ are computable in LQCD

I

$$\hat{\chi}_{ijk}^{uds} = \frac{\partial^{i+j+k}p/T^4}{\partial \left(\mu_u/T\right)^i \partial \left(\mu_d/T\right)^j \partial \left(\mu_s/T\right)^k} \Big|_{\mu_{u,d,s}=0} \qquad \mu_u = \frac{1}{3}\mu_{\rm B} + \frac{2}{3}\mu_{\rm Q} \qquad See recent reviews: LQCD: H.-T.Ding, F. Karsch, S.Mukherjee, Int. J. Mod. Phys. E 24 (2015) no.10, 1530007 \\ \mu_d = \frac{1}{3}\mu_{\rm B} - \frac{1}{3}\mu_{\rm Q} \qquad H_d = \frac{1}{3}\mu_{\rm B} - \frac{1}{3}\mu_{\rm Q} \qquad See recent reviews: LQCD: H.-T.Ding, F. Karsch, S.Mukherjee, Int. J. Mod. Phys. E 24 (2015) no.10, 1530007 \\ \mu_d = \frac{1}{3}\mu_{\rm B} - \frac{1}{3}\mu_{\rm Q} \qquad H_d = \frac{1}{3}\mu_{\rm B} - \frac{1}{3}\mu_{\rm Q} \qquad H_d = \frac{1}{3}\mu_{\rm B} - \frac{1}{3}\mu_{\rm Q} \qquad H_d = \frac{1}{3}\mu_{\rm B} - \frac{1}{3}\mu_{\rm Q} = \frac{1}{3}\mu_{\rm B} + \frac{1}{3}\mu_{\rm Q} = \frac{1}{3}\mu_{\rm R} + \frac{1}{3}\mu_{\rm R} + \frac{1}{3}\mu_{\rm R} + \frac{1}{3}\mu_{\rm R} = \frac{1}{3}\mu_{\rm R} + \frac{$$

At $eB \neq 0$ a lot more need to be explored

HRG: G. Kadam et al., JPG 47 (2020) 125106, Ferreira et al., PRD 98(2018)034003, Fukushima and Hidaka, PRL117 (2016)102301, Bhattacharyya et al., EPL115(2016)62003

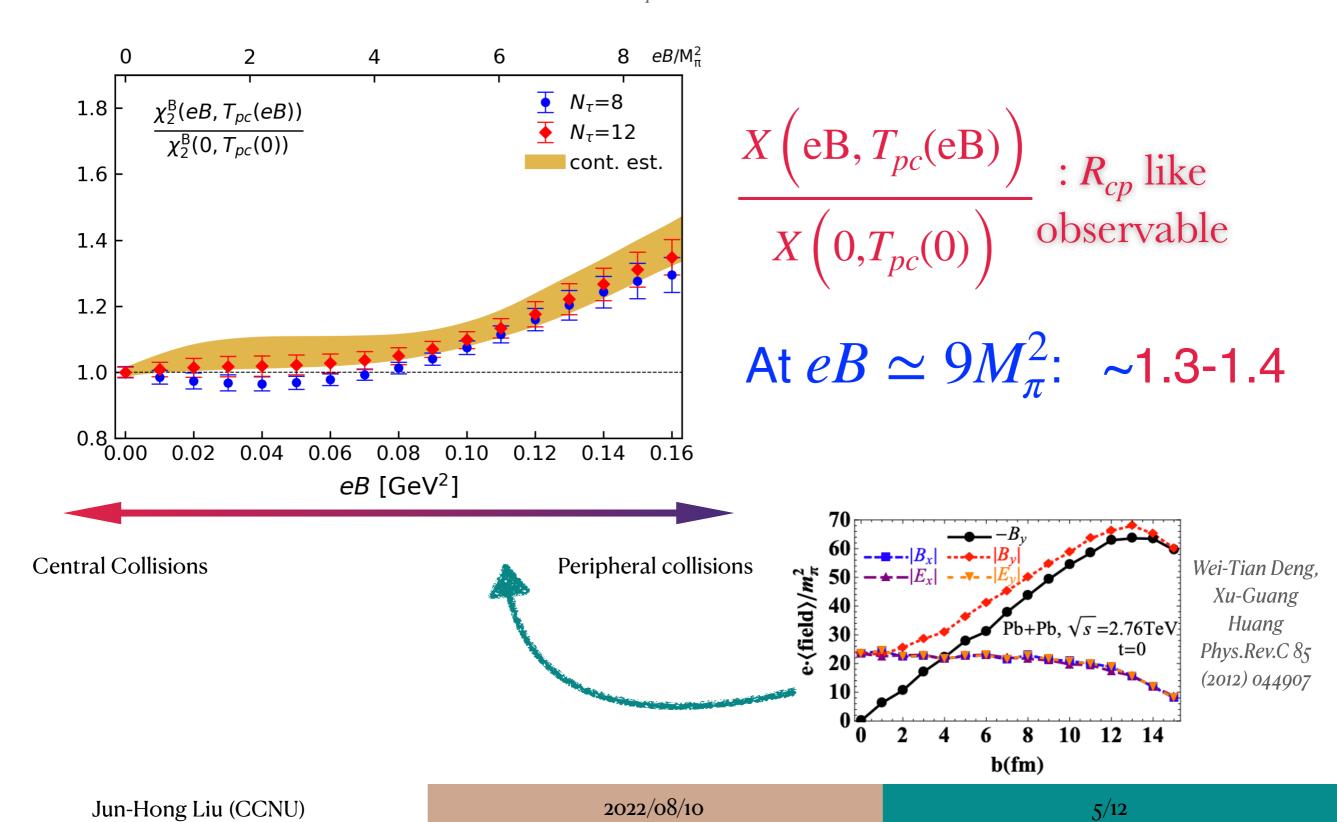
PNJL: *W.-J. Fu, Phys. Rev. D* 88 (2013) 014009

Jun-Hong Liu (CCNU)

2022/08/10

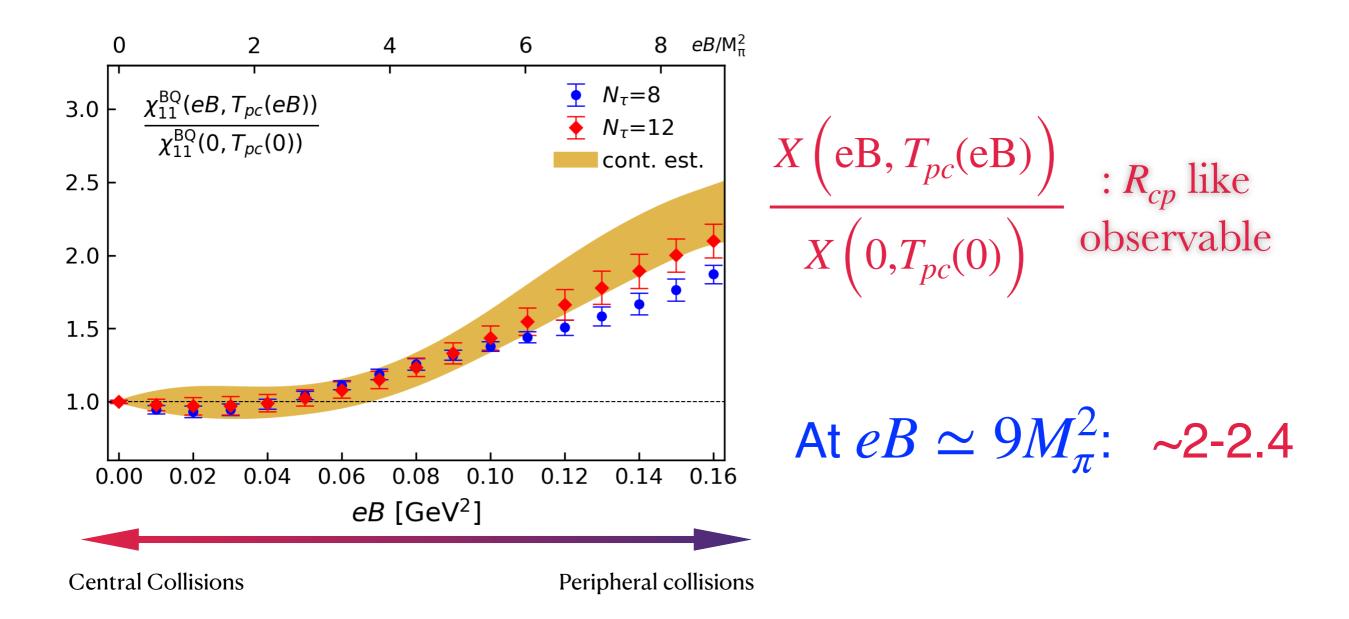
Ratio for 2nd order diagonal fluctuations

N_f=2+1 QCD, $M_{\pi}(eB = 0) \approx 135$ MeV, $T_{pc}(eB = 0) \approx 157$ MeV, with HISQ action

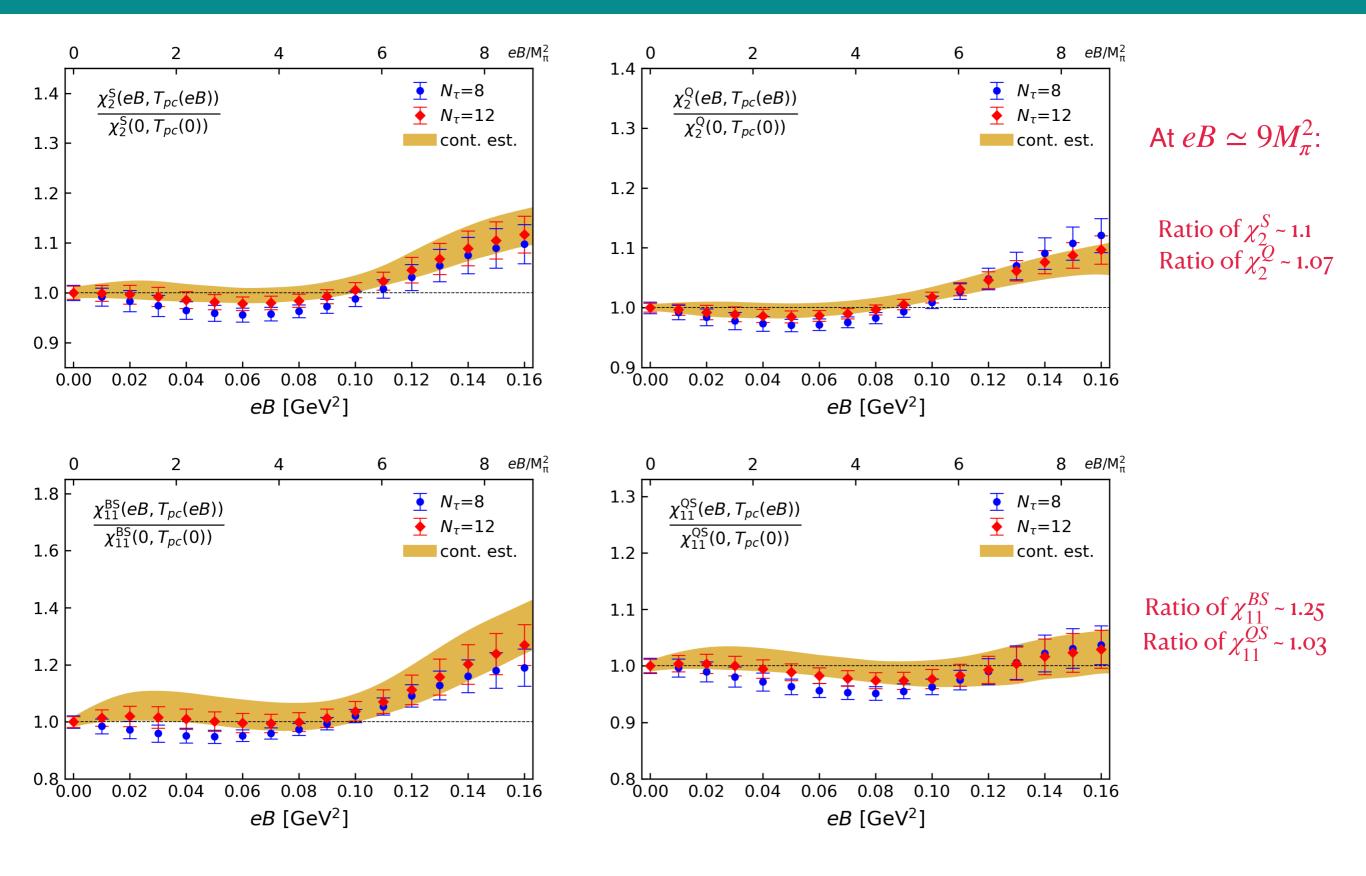


Ratio for 2nd order off-diagonal fluctuations

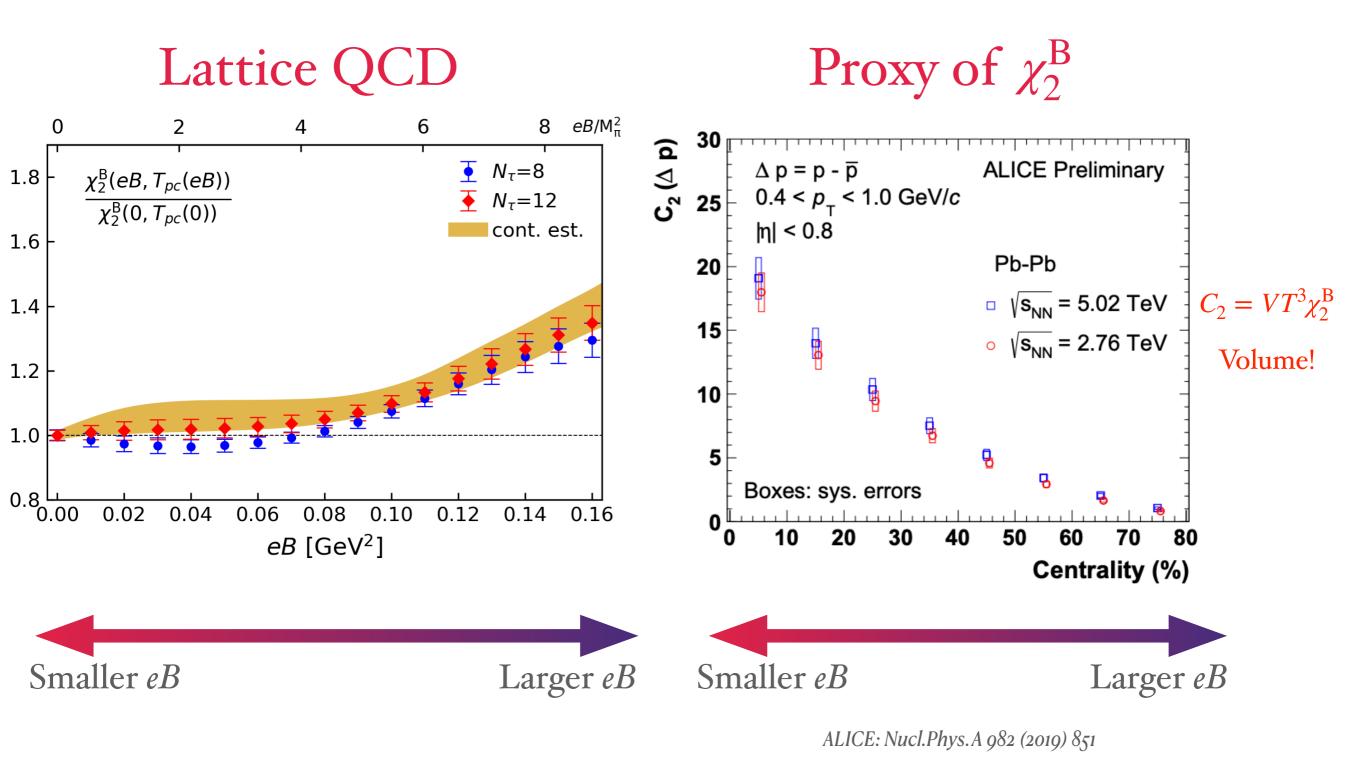
N_f=2+1 QCD, $M_{\pi}(eB = 0) \approx 135$ MeV, $T_{pc}(eB = 0) \approx 157$ MeV, with HISQ action



Ratio for other 2nd order fluctuations



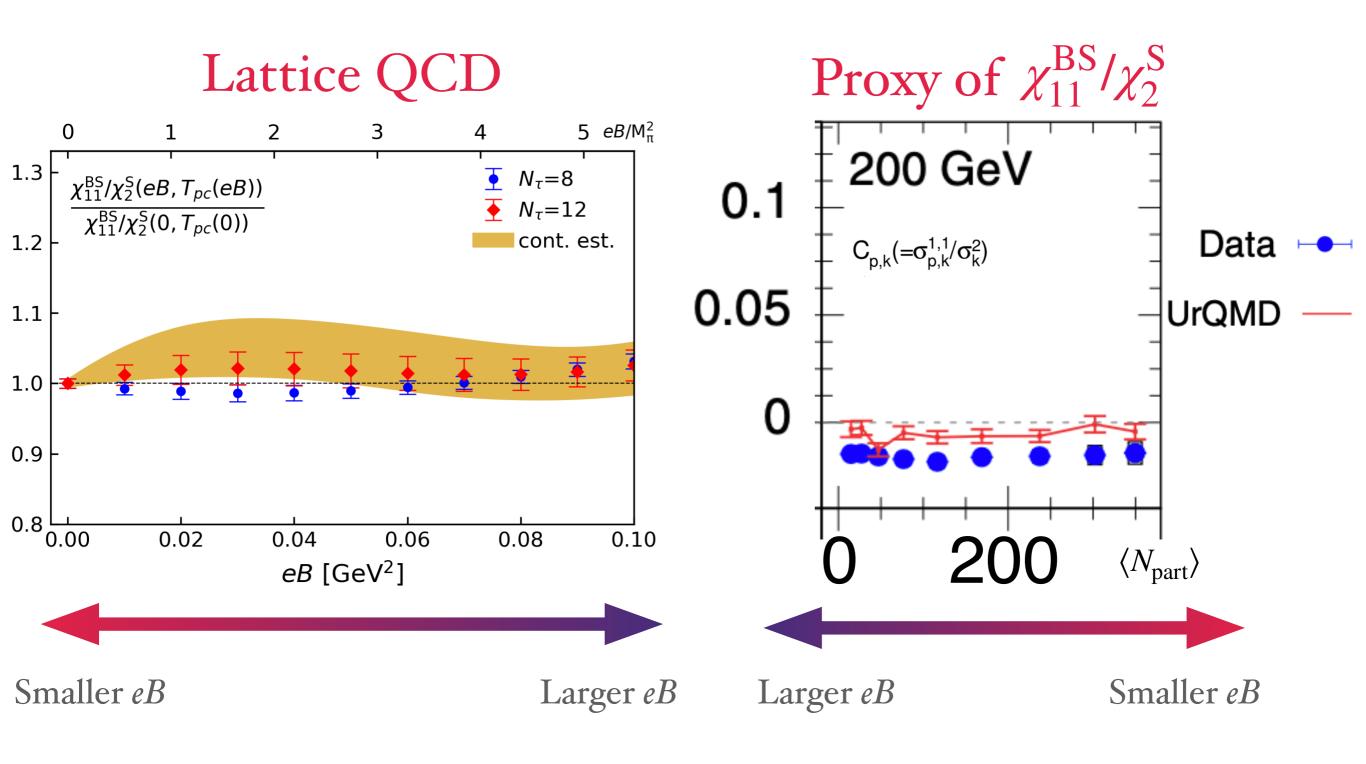
Lattice QCD meets experiment



Jun-Hong Liu (CCNU)

2022/08/10

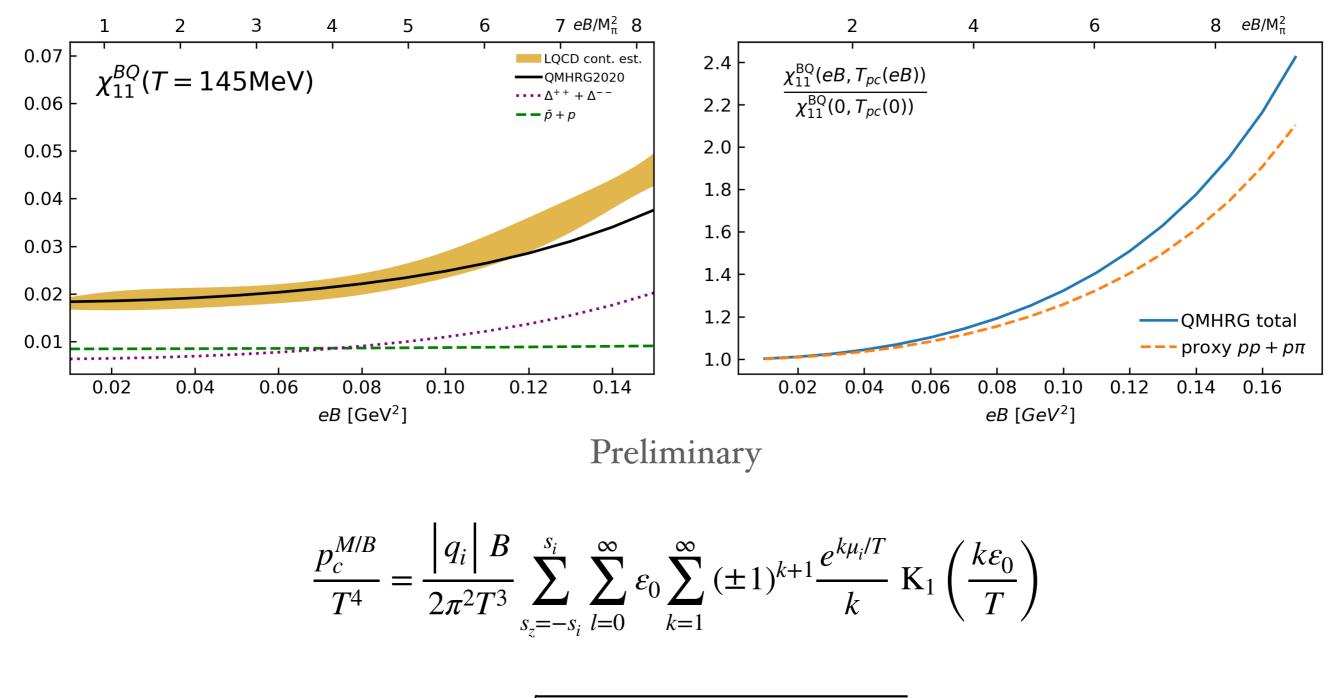
Lattice QCD meets experiment



STAR, Phys.Rev.C 100 (2019) 1, 014902

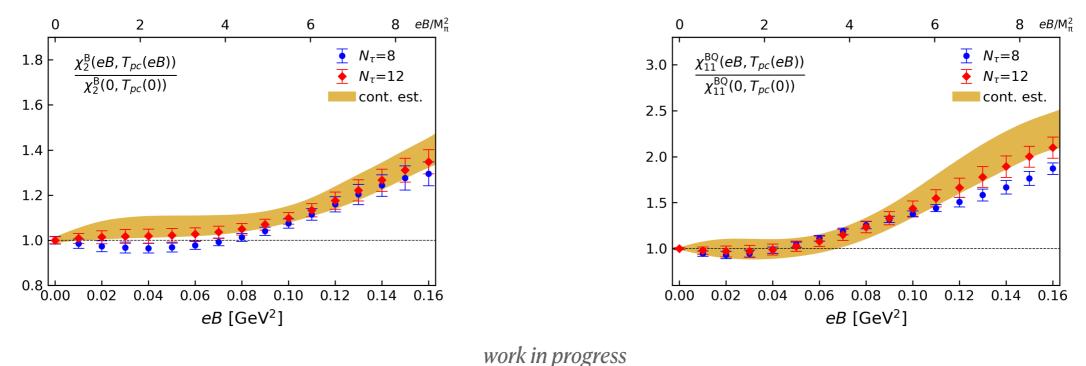
2022/08/10

Hadron resonance gas model



$$\varepsilon_0 = \sqrt{m_i^2 + 2 \left| q_i \right| B \left(l + 1/2 - s_z \right)}$$

- The 2nd order fluctuations and correlations of B,Q & S are strongly affected by eB
- R_{cp} like quantity could be useful to detect the existence of the magnetic field in HIC



Construct suitable proxies for the fluctuations via HRG

Thank you for your attention!

Backup

Lattice QCD in strong magnetic fields

B pointing to the z direction

$$u_{x}\left(n_{x}, n_{y}, n_{z}, n_{\tau}\right) = \begin{cases} \exp\left[-iqa^{2}BN_{x}n_{y}\right] & (n_{x} = N_{x} - 1)\\ 1 & (\text{otherwise}) \end{cases}$$
$$u_{y}\left(n_{x}, n_{y}, n_{z}, n_{\tau}\right) = \exp\left[iqa^{2}Bn_{x}\right]$$
$$u_{z}\left(n_{x}, n_{y}, n_{z}, n_{\tau}\right) = u_{t}\left(n_{x}, n_{y}, n_{z}, n_{\tau}\right) = 1$$

No sign problem !

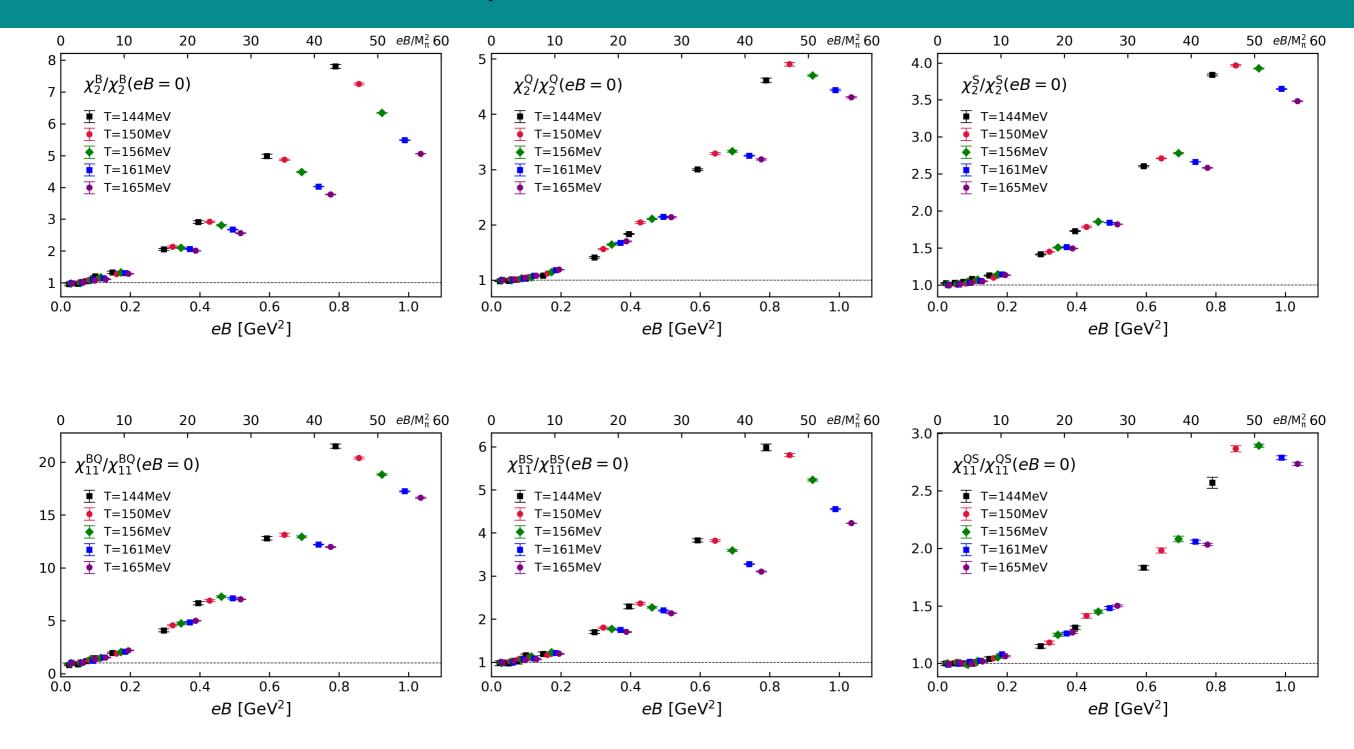
Landau gauge G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg et al., JHEP 02 (2012) 044.

Quantization of the magnetic field

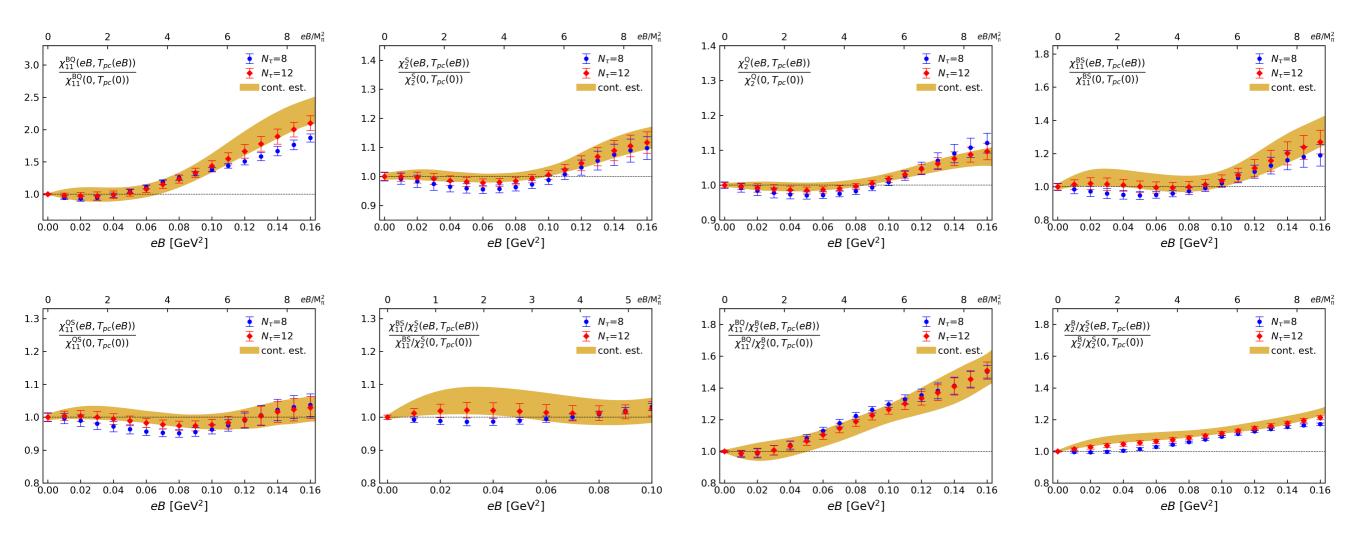
$$q_u = 2/3e$$

 $q_d = -1/3e$ $eB = \frac{6\pi N_b}{N_x N_y}a^{-2}$
 $q_s = -1/3e$

Second order fluctuation in $N_{\tau} = 8$ case



N_f=2+1 QCD, $M_{\pi}(eB = 0) \approx 135$ MeV, $T_{pc}(eB = 0) \approx 157$ MeV, with HISQ action



Lattice QCD setup

$$m_s = m_s^{\text{phy}}, m_l = m_l^{\text{phy}}, m_{\pi} \sim 135 \text{MeV}$$

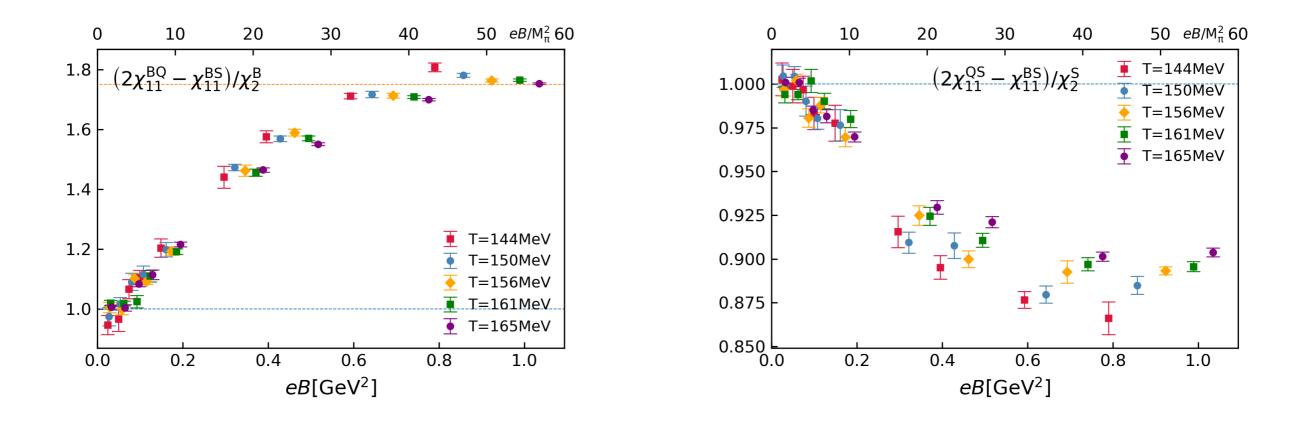
The N_{σ} is fixed to 32,48; $N_{\sigma} = N_x = N_y = N_z$

The N_{τ} is fixed to 8,12

T window: (144MeV,165MeV) around $(0.9T_{pc}, 1.1T_{pc})$

a is changed to get the targeted T , $T = \frac{1}{aN_{\tau}}$ eB window: (0,1GeV²)

Isospin symmetry breaking in $N_{\tau} = 8$ lattice

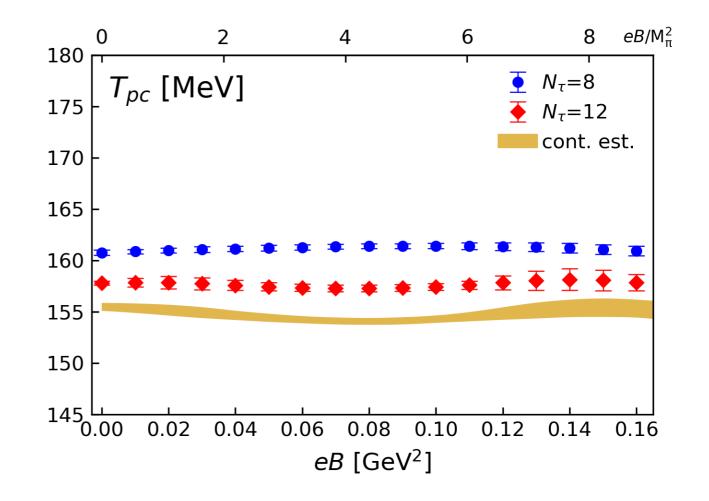


Due to $\chi_{11}^{us} = \chi_{11}^{ds}$ at eB = 0 case, we get:

$$2\chi_{11}^{QS} - \chi_{11}^{BS} = \chi_2^S,$$
$$2\chi_{11}^{BQ} - \chi_{11}^{BS} = \chi_2^B$$

$$\Sigma = \frac{1}{f_K^4} \left[m_s \langle \bar{u}u + \bar{d}d \rangle - (m_u + m_d) \langle \bar{s}s \rangle \right]$$
$$\chi^{\Sigma} = m_s \left(\frac{\partial}{\partial m_u} + \frac{\partial}{\partial m_d} \right) \Sigma$$

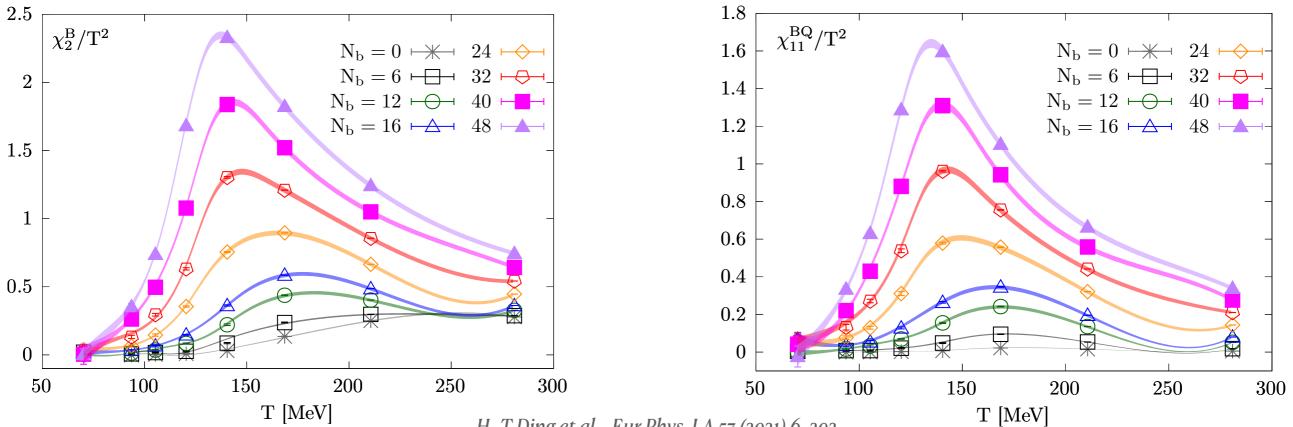
Finding the peak location of χ^{Σ} at each *eB* value



Second order fluctuation from Lattice QCD

No sign problem !

Nf=2+1 QCD, $M_{\pi}(eB = 0) \approx 220$ MeV, with $a^{-1} \approx 1.7$ GeV and HISQ action, fixed *a* approach $(T = a^{-1}/N_{\tau})$



H.-T.Ding et al., Eur.Phys.J.A 57 (2021) 6, 202

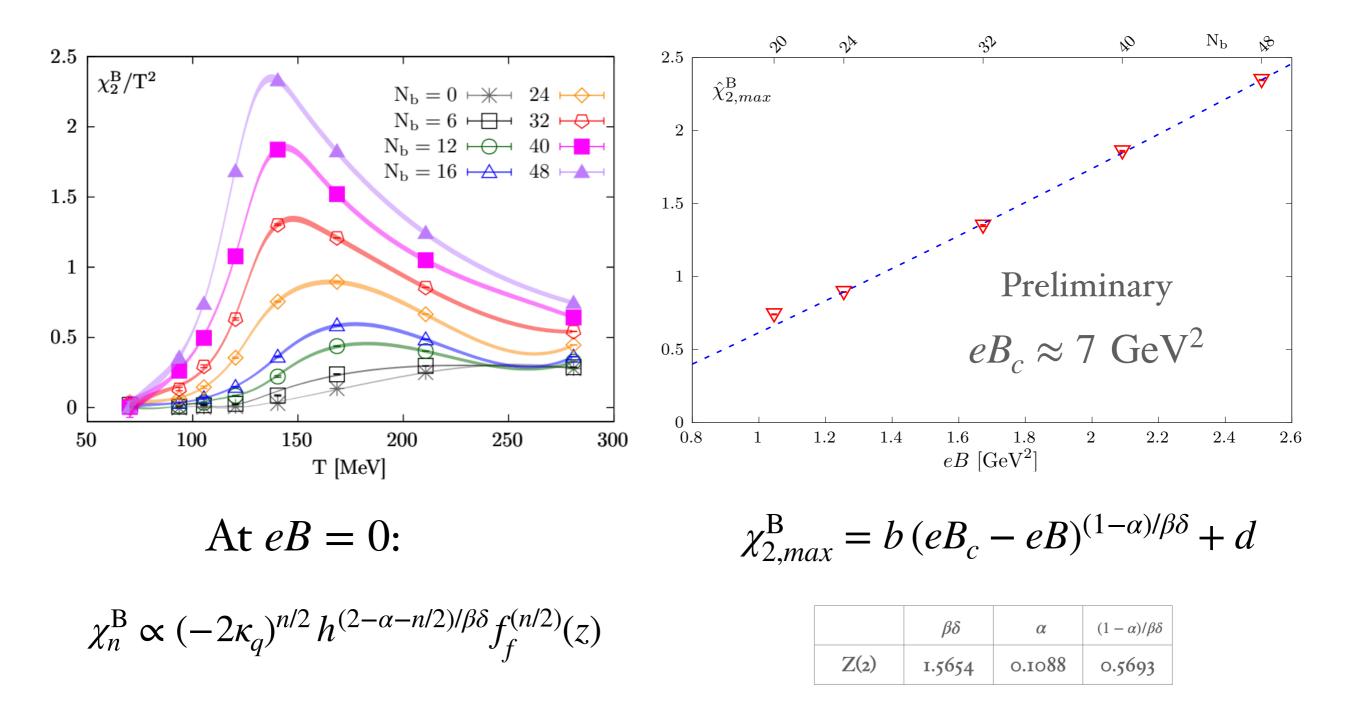
Peak locations shift to lower T in a stronger magnetic field.

Peak height becomes higher in a stronger magnetic field.

Consistent with the reduction of Tpc in a stronger magnetic field

Close to the critical end point in T-eB plane?

An estimate of the location of CEP in *T*-*eB* plane



Friman et al., Eur. Phys. J. C 71(2011)1694

1st order phase transition observed ~ 9 GeV² M. D'Elia et al. Phys.Rev.D 105 (2022) 3, 034511