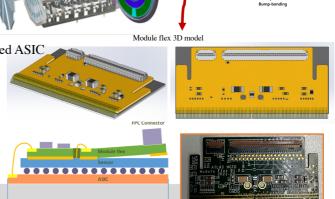
The module flex design and test for the High-Granularity Timing Detector

Shuqi Li^{1,2}, Jie Zhang¹ and Zhijun Liang¹

¹The Institute of High Energy Physics of the Chinese Academy of Sciences, Beijing, China ²University of Chinese Academy of Sciences, Beijing, China


Introduction

Design

- High-Granularity Timing Detector for ATLAS Phase-II upgrade
 - based on low gain avalanche detector technology
 - providing a time resolution better than 50 ps per track
 - improving the forward objects reconstruction
- Module
 - basic component of the HGTD
 - consisting of a full size sensor bump-bonded to two dedicated ASIC
 - · connected to PEB by module flex

Module flex

- > A flexible printed circuit board with multiple layers
- Module flex provide
 - analog and digital power for the ASIC chips
 - · bias voltage for the sensor
 - connection, distribution and DC coupling of the data signals
- ➤ IHEP will undertake ~ 4000 module assembly, of which module flex is completely designed and produced by IHEP.

- High Voltage connector (800V bias voltage)
- Wire bonding design
 - ASIC signals, low voltage, bias voltage for sensor will be connected to module flex by wire bonding
- PCB design
- Three grounding configuration
 - 6 layers flexible circuit boards
 - Three grounding configuration are designed as shown in **left table**
- \triangleright Thickness: 0.54 \pm 0.08 mm including 0.10 mm stiffener
- Impedance control
 - Single impedance: 50 ± 10% Ohm
 - Differential pair impedance: 100 ± 10% Ohm

Analog Power (Wice). HY Power and HY Ground, Signal lines Which is the state of th

Simulation

- Voltage drop simulation configuration
 - Software: Cadence 16.6 Allegro PCB SI GXI
 - PDN Analysis: Static IR Drop
- Voltage drop simulation results
- Three grounding configuration are simulated.
- The specific simulation results are shown in the bottom table.

mie domain maie.							
IR Drop Simulations For Module Flex							
Plane	Option A	Option B	Option C				
	Resistance _{max} [mΩ/cm]	Resistance _{max} [mΩ/cm]	Resistance _{max} [mΩ/cm]				
Power digital	0.83	8.45	0.83				
Power analog	0.69	6.77	0.70				
Ground digital	0.86	5.88	0.48				
Ground analog	0.96	0.72					

Testing

- Metrology measurements
 - satisfying the specification

	Length1[mm]	Length2[mm]	Width1[mm]	Width2[mm]	Thickness[mm]
Nominal	40.1	32	14.5	19.8	0.54
Measured	40.06±0.018	31.95±0.017	14.45±0.025	19.77±0.025	0.547 ± 0.011

Acceptance test for HV connector on module flex

- withstand voltage up to 2400V
- leakage current less than 1µA
- Impedance measurements
 - Single impedance: 53 60 Ohm
 - Differential impedance: 106 120 Ohm

ASIC signal pads

Summary

- The first version module flex has been produced and tested
- Relevant test results satisfy the specification
- Plan to perform full module level test, determine which grounding configuration the module flex will use according to the noise level on module