HERD穿越辐射探测器 TeV能区能量标定研究

刘宏邦 广西大学

高能物理分会 2022.08.11

長目

■ TRD原理简介

- TRD粒子鉴别应用
- 空间TRD TeV能区能量标定方法原理样机:侧窗式穿越辐射探测器
- ■总结

HERD

□采用了三维位置分辨五面灵敏的创新设计
 □大能区、高精度宇宙辐射探测

探测能区:
10 GeV-10 TeV (电子/光子)
0.5GeV - 10 GeV (光子)
30 GeV-3 PeV (核子)
能量分辨:
1%@200 GeV (电子)
20%@100 GeV-PeV (核子)

1. 地面束流 – CERN的400 GeV(质子)和250 GeV(电子)
2. 利用穿越辐射探测器(Transition Radiation Detector, TRD)

穿越辐射原理

在相对论情况下,带电粒子在穿过不同介电常数的介质时,在介质表面产生的一种电磁辐射
 辐射强度与入射粒子的速度成正比: W ∝ γ
 辐射角度与入射粒子的速度成反比: θ ∝ 1/γ
 辐射产生和饱和: γ_{threshold} ~ 10³, γ_{saturation} ~ 10⁴

TRD用于粒子鉴别

TRD用于粒子鉴别

基于THGEM穿越辐射探测器

穿越辐射体研究: 基于观测模拟,研 究TR辐射体材料和 结构设计

探测器封装技术研究: 防探测器老化问题

厚型气体电 子倍增器研 究:优化孔 径、孔距、 厚度等参数

读出设计

工作气体优化: 探测器具有高X 射线探测效率和 TRD探测灵敏度

阳极及电子学

(1) 模拟在轨观测

- 预计1-3个月完成一次 TeV质子在轨能标 □ 确定TRD在轨能标方案 确定TRD基本设计方案
 - □ 确定TRD反冲抑制方案

0.5

Entries

Mean

dE/dx

TR+dE/dx

Log10(Edep) (keV)

0.025F

0.02

0.015

[~]5000个TeV质

子事例TRD能谱

----- TR

15%

----- dE/dX

resolution

smeared

– TR+dE/dX

基于模拟观测,利用高能所E2实验束研究辐射体材料和结构设计

RADIATOR: A program to calculate the Transition Radiation quanta yield (from P. Nevsky) Material Abbreviation

TR yield calcu	lation - al	l data are i	.n mkm (1e-3	mm)	
++-	+	L rad+Nfoil+	Dfoil++	+	++
SET :BAREL:	1*1. :	1*1.	0*0.	0*0.	0*0.
BLOCK:NORMAL	1. 1.	1.	:		
ELEM :RADIA:P	PROP+AIR :	158e3. 150*	62 :		
:WALL :M	IYLAR :	0.05	:		
:CHAMB:X	Е :	3e4.	:		
:WALL :M	IYLAR :	0.05	:		
ELEM :RADIA:P	PROP+AIR :	158e3. 150*	62 :		
:WALL :M	IYLAR :	0.05	:		
:CHAMB:X	Е :	3e4.	:		
:WALL :M	IYLAR :	0.05	:		
THRES: :	3.0 3.5	4.0 4.5	5.0 5.5	6.0 6	i.5
ENERG: :	0.5 500	.005			
GAMMA: :	-1				
++-	+	+	+	+	++
VAR : G-1 :	5e2 1e3	3e3 6e3	8e3 1e4	2e4 4	e4
END : OF EXAMPLE					

穿越辐射体模拟

Abbreviation		
Н		
\mathbf{HE}		
\mathbf{C}		
Ν		
Ν		
0		
\mathbf{XE}		
\mathbf{BE}		
\mathbf{LI}		
В		
BIS		
\mathbf{GE}		
\mathbf{PST}		
\mathbf{PPR}		
MYL		
AIR		
20B		
30B		
BGO		
LIT		

TR photon spectra, calculated for eight gamma-factor values with RADIATOR program for 150 foils of 62 µm thick mylar radiator

辐射体参数优化

辐射体制作

2019.12 Test Beam @ IHEP

Radiators

Regular TR

GXU-0.5*300

GXU-0.5*150

GXU-0.8*225

GXU-0.8*100

Irregular TR

ROHA-69*69*200

ROHA-69*69*400

YC-8840

JLF-23K

The radiator we have

The radiator we tested

Layout of the detector

(3) 厚型气体倍增器研究

- 根据空间探测需要,研究
 不同气体探测器基材的出
 气率
- 研制低出气率、抗打火、 抗老化的大面积THGEM
- 优化THGEM的孔径,孔间
 距,厚度等几何结构参数

成功研制大面积THGEM 探测器 1m*0.5m

(4) 探测器封装技术

 研究空间探测器材料及封 装技术,并对探测器进行 简单的真空热循环试验

TRD探测器方案

经过多次方案迭代,提出了全新结构的侧窗式TRD

Side-on TRD

 The signals of TR are coupled with dE/dx in detector

 Side-on TRD have the ability to separate the TR signal form dE/dx EVENT by EVENT

TR: 10 keV @ γ~10³
dE/dx: 8.7keV/cm @1atm Xe

侧窗TRD原理样机

AGET ASIC

- 实现X射线信号与带电粒子信号逐事例分离
- 有效提高穿越辐射探测灵敏度
- TRD在轨能量标定时间从6个月缩短至1个月
- 欧洲核子中心CERN束流实验进行原理验证

2018.10 Test beam @ CERN

Side-on TRD

TRD detection efficiency

- 400GeV Proton beam
- 99.8% MIP detection efficiency

H4 Testbeam

TR detection

20GeV, 50GeV,100GeV electron beam Significant TR signal

2019.9 Test Beam @ DESY

e- beam @ TB24

- Beam momentum: 0.4-6GeV/c
- Rate: ~10Hz-4kHz, depending on beam energy etc.

穿越辐射探测器通过束流实验验证

2019年9月DESY束流实验结果: ●完成1-5GeV电子的穿越辐射能 量标定

●完成TRD能量标定原理验证

工程样机方案初步

