

Search for invisible decays and rare decays at BESIII

Jing-Shu Li 李静舒

Sun Yat-sen University 中山大学 On behalf of BESIII Collaboration

HIGH ENERGY PHYSICS BRANCH OF CPS

lijsh53@mail2.sysu.edu.cn

2022-8-10

BEPCII and BESIII

- BESIII data samples
- Search for invisible decays
- Search for rare decays
- Search for LFV

BEPCII and BESIII

Charm Factory

Beijing Electron Positron Collider II

RF SR RF Beam energy: 1.0 – 2.45 GeV Luminosity: 1×10³³ cm⁻²s⁻¹ Optimum energy: 1.89 GeV Energy spread: 5.16 \times 10⁻⁴ No. of bunches: 93 1. 5cm IP

BESIII Detector

Search for invisible decays at BESIII

Search for $J/\psi \rightarrow \gamma + \text{invisible via } \psi' \rightarrow \pi^+ \pi^- J/\psi$

 (A^0) . The A^0 can decay to two neutralinos.

• Using $(448.1 \pm 2.9) \times 10^6 \psi(3686)$ events

A series of supersymmetric Standard Models,
 Model, predict a CP-odd pseudoscalar Higgs
 A series of supersymmetric Standard Models,
 B(J/ψ → γ invisible) < 7.0×10⁻⁷ @
 90% C.L.
 A series of supersymmetric Standard Models,
 B(J/ψ → γ invisible) < 7.0×10⁻⁷ @
 CLL
 A series of supersymmetric Standard Models,
 C(V → μ)
 C(V

- Calculate UL for β and θ_A
 - $\blacklozenge g_c = \cos\theta_A / \tan\beta, g_b = \cos\theta_A \tan\beta$

60

50

40

30

20

10

data

J/w SideBand

igMC(m=0 GeV/c²)

J/w->other

J/ψ->nπ J/ψ->γ Κ_ι Κ_ι J/ψ->γ η

Events / 10.0 MeV/c²

Search for a CP-odd light Higgs boson in $J/\psi \rightarrow \gamma A^0$

The light particle X could be a Higgs-like boson A^0 , a spin-1 U boson, or a pseudoscalar sgoldstino particle • Search for di-muon decays of A^0 using 9 billion J/ψ events Fits to the $m_{red} = \sqrt{m_{\mu^+\mu^-}^2 - 4m_{\mu}^2}$ distributions for (top) $m_{A^0} = 0.221 \text{ GeV}/c^2$ and (bottom) $m_{A^0} = 0.696 \text{ GeV}/c^2$ $\mathbf{A} \mathcal{B}(J/\psi \to \gamma A^0) \times \mathcal{B}(A^0 \to \mu^+ \mu^-)$ in range of $(1.2 - 778.0) \times 10^{-9}$ @ 90% C.L. for $0.696 \le$ $m_{A^0} \le 3.0 \, {\rm GeV}/c^2$ • Better than BaBar for $m_{A^0} < 0.7 \text{ GeV}/c^2$

Jing-Shu Li

Search for the invisible decay of Λ baryon

 Dark matter may be represented by baryon matter with invisibles, and many theories suggest a potential correlation between baryon symmetry and dark sector

◆ Neutron lifetime difference in beam method s & storage methods → $\mathcal{B}(n \rightarrow p + X) \approx 99\%$

- Search signal on total energy in EMC
- Main background: $\Lambda \rightarrow n\pi^0$
- \blacklozenge By control sample, get precise n's and noise's $E_{\rm EMC}$ and correct MC simulation

♦ $\mathcal{B}(\Lambda \rightarrow invisible) < 7.4 \times 10^{-5}$ @

Search for rare decays at BESIII

• Search for the charmonium weak decay $J/\psi \rightarrow D^-e^+\nu_e$

• Search for the hyperon semileptonic decay $\Xi^- \rightarrow \Xi^0 e^- \overline{\nu}$

• The inclusive branching fraction of J/ ψ weak decays to a single charmed meson was predicted to be at the order of 10^{-8} or lower in the Standard Model (SM)

 $\oint J/\psi \to D^- e^+ \nu, \ D^- \to K^+ \pi^- \pi^-$

• Use a fit on U_{miss} to extract the signal.

(2) Gamma conversion with *e* misidentified as π/K

◆ $\mathcal{B}(J/\psi \to D^- e^+ \nu + c.c.) < 7.1 \times 10^{-8}$ @ 90% C.L.

♦ Compatible with the SM theoretical predictions, and puts a stringent constraint on the parameter spaces for different new physics models predicting BFs at the order of 10^{-5}

Search for hyperon semileptonic decay $\Xi^- \rightarrow \Xi^0 e^- \overline{\nu}$

Hyperon semi-leptonic decays provide
 important information on the interplay
 between weak interactions and hadronic
 structures formed through strong
 interactions

```
• Using (10.087 \pm 0.044) \times 10^9 J/\psi events
```

 $\bigstar M_{\overline{\Lambda}\pi^+}^{\text{recoil}} = \sqrt{(E_{\text{CM}} - E_{\overline{\Lambda}\pi^+})^2 - |\vec{p}_{\overline{\Lambda}\pi^+}|^2}$

◆ To extract the DT yield, the invariant mass squared of the leptonneutrino system, $q^2 = (E_{CM} - E_{\Xi^+} - E_{\Xi^0})^2 - (\vec{p}_{CM} - \vec{p}_{\Xi^+} - \vec{p}_{\Xi^0})^2$ ◆ $\mathcal{B}(\Xi^- \to \Xi^0 e^- \overline{v_e}) < 2.59 \times 10^{-4}$ @ 90% C.L.

Phys. Rev. D 104, 072007 (2021)

Search for the FCNC process $D^0 o \pi^0 u \overline{ u}^{\dagger}$

◆ In SM, FCNC is strongly suppressed by GIM mechanism and can happen only through loop diagram, leading to a very small BF $\sim 10^{-9}$, theoretically

The suppression in charm decays is much stronger than those in B and K system due to stronger diagram Discriminator: EMC energy not associated with signal and tag decays

•
$$M_{\text{miss}}^2 = (E_D)^2 / c^4 - |\vec{p}_{\pi^0}|^2 / c^4$$

◆ $\mathcal{B}(D^0 \to \pi^0 \nu \bar{\nu}) < 2.1 \times 10^{-4}$ @ 90% C.L.

Provide a clean probe to search for New Physics in charm sector

• The first experimental results of search for $c \rightarrow uv\bar{v}$ processes

• Search for CLFV decay $J/\psi \rightarrow e\tau$

• Search for CLFV decay $J/\psi \rightarrow e\mu$

Phys. Lett. B 496, 89 (2000)

Search for charged lepton flavor violating decay

• New physics models predicting $\mathcal{B}(J/\psi \rightarrow e\mu)$ to $10^{-16} \sim 10^{-9}$, $\mathcal{B}(J/\psi \rightarrow e\tau)$ to $10^{-10} \sim 10^{-8}$

 $J/\psi \to e\tau$

- $\bigstar J/\psi \to e\tau, \tau \to \pi\pi^0 \nu, U_{miss} = E_{miss} c \left| \vec{P}_{miss} \right|$
- ◆ $B(J/\psi \to e\tau) < 7.5 \times 10^{-8}$ @ 90% C.L.
- The 1st submitted paper based on full 10 billion J/ψ data of BESIII Phys. Rev. D 103, 112007 (2021)

BESIII performed wide range study of new physics, with many first searches or best limits

 \blacklozenge The latest searching results for invisible decays, rare decays, and CLFV decays on J/ψ are reported

 BESIII has great potentials with unique (and increasing) datasets and analysis techniques

Thank you