

Higher Twist Transverse Momentum Dependent Parton Distribution Functions in the MIT Bag Model

Zhe Zhang (张哲)

Collaborators: Zuo-tang Liang, Tianbo Liu, Bao-Dong Sun, Shu-yi Wei

Shandong University

2022.08.09

Outline

Introduction

- Nucleon structure and TMDs
- Higher twist effects

TMDs in the MIT bag model

- MIT bag model
- Higher twist TMDs
- Higher twist contributions in $e^- p \rightarrow e^- q X$

Summary

Transverse momentum dependent parton distribution functions (TMDs)

Leading twist azimuthal asymmetries for semi-inclusive process: $e^- p \rightarrow e^- q X$

$$egin{array}{rcl} \langle \sin{(\phi-\phi_S)}
angle_{UT} &=& \displaystyle rac{\left|ec{k}_{\perp}
ight|}{2M} \displaystyle rac{f_{1T}_{\perp}}{f_1} \ \langle \cos{(\phi-\phi_S)}
angle_{LT} &=& \displaystyle \displaystyle rac{\left|ec{k}_{\perp}
ight|}{2M} \displaystyle rac{C\left(y
ight)}{A\left(y
ight)} \displaystyle rac{g_{1T}_{\perp}}{f_1} \end{array}$$

Introduction

Higher twist effects (twist-2, twist-3, twist-4)

Leading twist azimuthal asymmetries

Higher twist azimuthal asymmetries

$$\langle \sin (\phi - \phi_S) \rangle_{UT} = \frac{\left| \vec{k}_{\perp} \right|}{2M} \frac{f_{1T}^{\perp}}{f_1} \left(1 - \frac{M^2}{Q^2} \alpha_{UT} \right) \qquad \langle \cos \phi \rangle_{UU}$$

$$\langle \cos (\phi - \phi_S) \rangle_{LT} = \frac{\left| \vec{k}_{\perp} \right|}{2M} \frac{C \left(y \right)}{A \left(y \right)} \frac{g_{1T}^{\perp}}{f_1} \left(1 - \frac{M^2}{Q^2} \alpha_{LT} \right) \qquad \langle \sin \phi \rangle_{UL}$$

$$\alpha_{UT} = \alpha_{UU} - 8x^2 \frac{E \left(y \right)}{A \left(y \right)} \frac{f_{3T}^{\perp}}{f_{1T}^{\perp}} + 4x \frac{\operatorname{Re} f_{+3ddT}^{\perp}}{f_{1T}^{\perp}} \qquad \langle \cos 2\phi \rangle_{UU}$$

$$\alpha_{LT} = \alpha_{UU} - 4\kappa_M^2 x \frac{\operatorname{Re} f_{+3ddT}^{\perp 3}}{g_{1T}^{\perp}} \qquad \langle \sin 2\phi \rangle_{UL}$$

$$\alpha_{UU} = 8x^2 \frac{E \left(y \right)}{A \left(y \right)} \frac{f_3}{f_1} - 4x \frac{\operatorname{Re} f_{+3dd}}{f_1}$$

$$\begin{split} \langle \cos \phi \rangle_{UU} &= -\kappa_M \frac{\left|\vec{k}_{\perp}\right|}{M} \frac{B\left(y\right)}{A\left(y\right)} \frac{xf^{\perp}}{f_1} \\ \langle \sin \phi \rangle_{UL} &= -\kappa_M \frac{\left|\vec{k}_{\perp}\right|}{M} \frac{B\left(y\right)}{A\left(y\right)} \frac{xf_{\perp}^{\perp}}{f_1} \\ \langle \cos 2\phi \rangle_{UU} &= -\kappa_M^2 \frac{\left|\vec{k}_{\perp}\right|^2}{M^2} \frac{E\left(y\right)}{A\left(y\right)} \frac{xf_{-3d}^{\perp}}{f_1} \\ \langle \sin 2\phi \rangle_{UL} &= \kappa_M^2 \frac{\left|\vec{k}_{\perp}\right|^2}{M^2} \frac{E\left(y\right)}{A\left(y\right)} \frac{xf_{+3dL}^{\perp}}{f_1} \\ \cdot \end{split}$$

There are three impacts of the higher twist TMDs

- 1 Twist-2 azimuthal asymmetries corrected by twist-4 factors
- 2 Higher twist azimuthal asymmetries arising
- ③ Quark-gluon-quark correlators contributions involved

S.Y. Wei, Y.K. Song, K.B. Chen, Z.T. Liang, PRD 95, 074017 (2017).

Introduction

Estimation of the Higher twist effects

Relationships at g=0 i.e. Wandzura-Wilczek-type approximation

$$\begin{aligned} x^{2}f_{3} &= -\frac{k_{\perp}^{2}}{2M^{2}}xf^{\perp} = -\frac{k_{\perp}^{2}}{2M^{2}}f_{1} \\ x^{2}g_{3L} &= -\frac{k_{\perp}^{2}}{2M^{2}}xg_{L}^{\perp} = -\frac{k_{\perp}^{2}}{2M^{2}}g_{1L} \\ x^{2}g_{3T}^{\perp} &= xg_{T} = -\frac{k_{\perp}^{2}}{2M^{2}}xg_{T}^{\perp} = -\frac{k_{\perp}^{2}}{2M^{2}}g_{1T}^{\perp} \\ x^{2}f_{3T}^{\perp} &= -xf_{T} = -\frac{k_{\perp}^{2}}{2M^{2}}xf_{T}^{\perp} = -\frac{k_{\perp}^{2}}{2M^{2}}f_{1T}^{\perp} \end{aligned}$$

A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders, M. Schlegel, JHEP 02 (2007) 093. S.Y. Wei, Y.K. Song, K.B. Chen, Z.T. Liang, PRD 95, 074017 (2017).

Model calculation

H. Avakian, A.V. Efremov, P. Schweitzer, F. Yuan, PRD 81, 074035 (2010).

quark-quark and quark-gluon-quark correlators

V 1901

MIT bag model

A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.Weisskopf, PRD 9, 3471 (1974).R. Jaffe, PRD 11, 1953 (1975).

③ The gauge link and the covariant derivative

$$egin{aligned} \mathcal{L}\left(z,y
ight) &= \mathcal{L}^{\dagger}\left(\infty;z
ight)\mathcal{L}\left(\infty;y
ight), \ \mathcal{L}\left(\infty;y
ight) &= \mathcal{P}e^{-ig\int_{y^{-}}^{\infty}d\xi^{-}A^{+}\left(y^{+},\xi^{-},ec{y}_{\perp}
ight)} \ D_{
ho} &= -i\partial_{
ho}+gA_{
ho} \end{aligned}$$

One-gluon-exchange approximation

F. Yuan, PLB 575, 45 (2003). A. Courtoy, S. Scopetta, V. Vento, PRD 79, 074001 (2009).

Higher twist TMDs

Definition

Quark-quark correlator

Quark-gluon-quark correlator

Quark-two-gluon-quark correlator

(twist-2, twist-3, twist-4)

$$\Phi_{\alpha}^{(0)} = \cdots + \cdots + \frac{M^2}{p^+} n_{\alpha} \left(f_3 - \frac{\varepsilon_{\perp}^{kS}}{M} f_{3T}^{\perp} \right)$$
$$\varphi_{\rho\alpha}^{(1)} = p^+ \bar{n}_{\alpha} k_{\perp \rho} f_d^{\perp} \cdots + M^2 g_{\perp \rho \alpha} f_{3d} \cdots$$
$$\varphi_{\rho\sigma\alpha}^{(2)} = p^+ \bar{n}_{\alpha} M^2 g_{\perp \rho \sigma} f_{3dd} \cdots$$

K. Goeke, A. Metz, M. Schlegel, PLB 618 90 (2005). S.Y. Wei, Y.K. Song, K.B. Chen, Z.T. Liang, PRD 95, 074017 (2017).

Expression in the MIT bag model

$$\begin{split} f_{3} &= \frac{\sqrt{2} \left(p^{+}\right)^{2}}{2M^{2} \left(2\pi\right)^{3}} E_{P} \sum_{m_{1}m_{2}\Lambda} C_{q,\Lambda'\Lambda}^{m_{1}m_{2}} \delta_{\Lambda\Lambda'} \bar{\varphi}_{m_{1}}(\vec{k}) \gamma^{-} \varphi_{m_{2}}(\vec{k}) \\ &- g^{2} E_{p} \frac{\left(p^{+}\right)^{2}}{M^{2}} \sum_{m_{1}m_{2}m_{3}m_{4}\Lambda} C_{q,\Lambda'\Lambda}^{m_{1}m_{2}m_{3}m_{4}} \delta_{\Lambda\Lambda'} \int \frac{d^{3}k_{1}}{\left(2\pi\right)^{6}} \int \frac{d^{3}k_{2}}{\left(2\pi\right)^{2}} \frac{2}{\vec{k}_{1}^{2}} \\ &\times P\left(\frac{1}{k_{1z}}\right) \operatorname{Re}\left[\bar{\varphi}_{m_{1}}(\vec{k}-\vec{k}_{1})\gamma^{-} \varphi_{m_{2}}(\vec{k}) \bar{\varphi}_{m_{3}}(\vec{k}_{2}+\vec{k}_{1})\gamma^{+} \varphi_{m_{4}}(\vec{k}_{2})\right] \end{split}$$

T-even: none gluon term + one-gluon-exchange term

$$\begin{aligned} f_{3T}^{\perp} &= -g^2 \frac{\left(p^+\right)^2}{Mk_y} E_p \sum_{m_1 m_2 m_3 m_4 \Lambda} C^{m_1 m_2 m_3 m_4}_{q,\Lambda'\Lambda} \delta_{\Lambda,-\Lambda'} \int \frac{d^2 k_{1\perp}}{\left(2\pi\right)^5} \int \frac{d^3 k_2}{\left(2\pi\right)^2} \\ & \frac{1}{\vec{k}_{1\perp}^2} \mathrm{Im} \left[\bar{\varphi}_{m_1}(\vec{\vec{k}} - \vec{k}_{1\perp}) \gamma^- \varphi_{m_2}(\vec{\vec{k}}) \bar{\varphi}_{m_3}(\vec{k}_2 + \vec{k}_1) \gamma^+ \varphi_{m_4}(\vec{k}_2) \right] \end{aligned}$$

T-odd: only one-gluon-exchange term

STATIONS INTERNAL

Higher twist TMDs from the quark-quark correlator (T-even)

Higher twist TMDs from the quark-quark correlator (T-odd)

F. Yuan, PLB 575, 45 (2003).A. Courtoy, S. Scopetta, V. Vento, PRD 79, 074001 (2009).

All of them on the same order of magnitude.

10

Higher twist TMDs from the quark-gluon-quark correlator (T-even)

V STATES

Higher twist TMDs from the quark-gluon-quark correlator (T-odd)

The deviation of this approximation (g=0) is very significant for the T-odd TMDs.

Twist-2 azimuthal asymmetries in $e^- p \rightarrow e^- q X$ (T-even)

Twist-4 contributions vary between 2% and 5%.

VI ISOL

Twist-2 azimuthal asymmetries in $e^- p \rightarrow e^- q X$ (T-odd)

Twist-4 contributions are significant: u quark 30%, d quark 8%

TMDs in the MIT bag model

Twist-3 azimuthal asymmetries in $e^- p \rightarrow e^- q X$

$$\langle \cos \phi \rangle_{UU} = -\kappa_M \frac{\left| \vec{k}_\perp \right|}{M} \frac{B(y)}{A(y)} \frac{x f^\perp - \operatorname{Re}\left[f_{-d}^\perp \right]}{2f_1}$$

Contributions from quark-gluon-quark correlator can be comparable with those from quark-quark correlator.

TMDs in the MIT bag model

Twist-3 azimuthal asymmetries vary between 0.01 % and 20%.

TMDs in the MIT bag model

Twist-4 azimuthal asymmetries vary between 0.01 % and 1 %.

> We calculate the chiral-even TMDs up to twist-4 in the MIT bag model.

	twist-2	twist-3	twist-4
quark-quark correlator	4	8 (4+4)	4
quark-gluon-quark correlator	/	8	48

Twist-4 TMDs defined via quark-quark correlator are about the same size as the twist-2 TMDs in order of magnitude.

- The twist-4 TMDs provide considerable contributions to the leading twist azimuthal asymmetries at $\sqrt{s} = 16.7 \text{ GeV}, Q^2 = 4 \text{ GeV}^2$, especially for the T-odd type azimuthal asymmetries.
- Higher twist azimuthal asymmetries vary between 0.01 % and 20 % at $\sqrt{s} = 16.7 \text{ GeV}, Q^2 = 4 \text{ GeV}^2$.
- Higher twist effects from the Quark-gluon-quark correlators are comparable with those from quark-quark correlator.

Thanks for your attention!

backup

T-odd effect: simulating the effect of the gauge link

$$f_q\left(x,k_{\perp};S_T
ight) = f_q\left(x,k_{\perp}
ight) + \left(\hat{k}_{\perp} imes \hat{p}
ight) \cdot \vec{S}_T f_{1T}^{\perp}\left(x,k_{\perp}
ight)$$

D.W. Sivers, PRD 41, 83 (1990). D.W. Sivers, PRD 43, 261 (1991).

$$\hat{\Phi}^{(0)}(x,k_{\perp}) = \int \frac{p^+ dy^- d^2 y_{\perp}}{(2\pi)^3} e^{ik \cdot y} \times \left\langle P \left| \bar{\psi}(0) \psi(y) \right| P \right\rangle$$

$$\hat{\Phi}^{(0)}(x,k_{\perp}) = \int \frac{p^+ dy^- d^2 y_{\perp}}{(2\pi)^3} e^{ik \cdot y} \times \left\langle P \left| \bar{\psi}(0) \mathcal{L}(0,y) \psi(y) \right| P \right\rangle$$

S.J. Brodsky, D.S. Hwang, I. Schmidt, PLB 530, 99 (2002). J.C. Collins, PLB 536, 43 (2002). One-gluon-exchange approximation

helicity flip: $\delta_{m_1-m_2}$ vs. $\delta_{m_1-m_2}$ or $\delta_{m_3-m_4}$

F. Yuan, PLB 575, 45 (2003). A. Courtoy, S. Scopetta, V. Vento, PRD 79, 074001 (2009).

 $\mathcal{L} = (i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - B)\theta(R - r) - \frac{1}{2}\bar{\psi}\psi\delta(R - r)$ $\lim_{\substack{k \in \mathbb{Z}}} E. \text{ Roionov, The MIT bag model in nuclear and particle physics, 1997.}$ $\psi_{m}(\vec{r},t) = \phi_{m}(\vec{r})e^{-i\omega t/R}$ $\psi_{m}(\vec{r},t) = \phi_{m}(\vec{r})e^{-i\omega t/R}$ $\phi_{m}(\vec{r}) = \frac{N}{\sqrt{4\pi}}\left(\frac{j_{0}\left(\frac{\omega r}{R}\right)\chi_{m}}{j_{1}\left(\frac{\omega r}{R}\right)i\vec{\sigma}\cdot\vec{e}_{r}\chi_{m}}\right)$ $-\frac{1}{2}\eta_{\mu}\partial^{\mu}(\bar{\psi}\psi) = B \quad \text{for } \vec{r} \in S$ $N = \left(\frac{\omega^{4}}{R^{3}\left(\omega^{2} - \sin^{2}(\omega)\right)}\right)^{1/2}$

A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, PRD 9, 3471 (1974).R. Jaffe, PRD 11, 1953 (1975).

Lagrangian density for the MIT bag model

 j_i are spherical Bessel functions

S. Bhattacharya, Z.B. Kang, A. Metz, G. Penn, D. Pitonyak, PRD 105, 034007 (2022).

T-even TMDs vs. T-odd TMDs

T-even TMDs

Surface effects

Collinear expansion and quark-quark/quark-j-gluon-quark correlators

Y.K. Song, J.H. Gao, Z.T. Liang, X.N. Wang, PRD 83, 054010 (2011); 89, 014005 (2014). $\langle P \left| \bar{\psi}(0) D_{\perp \rho}(0) \mathcal{L}(0, y) \psi(y) \right| P \rangle \longrightarrow \text{The quark field}$ The proton state The gauge link and the covariant derivative

Contributions from the four-quark correlator

TMDs defined via the four-quark correlator

R. Ellis, W. Furmanski, R. Petronzio, NPB 207, 1 (1982).
J.W. Qiu, PRD 42, 30 (1990).
S.Y. Wei, Y.K. Song, K.B. Chen, Z.T. Liang, PRD 95, 074017 (2017).

$$W_{UU,T} = xf_1 + 4x^2 \kappa_M^2 (f_{+3dd} + f_{4q})$$

$$W_{LL} = xg_{1L} + 4x^2 \kappa_M^2 (f_{+3ddL} - f_{4qL})$$

$$W_{UT,T}^{\sin(\phi-\phi_S)} = \frac{\left|\vec{k}_{\perp}\right|}{M} (xf_{1T}^{\perp} + 4x^2 \kappa_M^2 (f_{+3ddT}^{\perp} + f_{4qT}^{\perp}))$$

$$W_{LT}^{\cos(\phi-\phi_S)} = \frac{\left|\vec{k}_{\perp}\right|}{M} (xg_{1T}^{\perp} + 4x^2 \kappa_M^2 (f_{+3ddT}^{\perp3} - f_{4qT}^{\perp2}))$$

TMDs defined via four-quark correlator behave as addenda to those defined via the quark-two-gluon-quark correlator.

Four-quark correlator vs. quark-two-gluon-quark correlator

One might well neglect the contributions from the four-quark correlator.