Study on the Optimized Energy Resolution of Scintillator **Detectors Based on SiPMs and LYSO:Ce** Peng Hu¹, Hao Guo¹, Zhehao Hua¹, Zhigang Wang¹, Sen Qian¹ ¹Institute of High Energy Physics, Chinese Academy of Sciences

1.Introduction

- Main advantages of the cerium-doped lutetium yttrium silicate (LYSO:Ce) crystal: high density, high light output, fast decay time and non-hygroscopic
- Silicon Photomultipliers (SiPMs): high gain, immunity to magnetic fields, compact structure and single photon detection capability
- Scintillator detectors combining SiPMs and LYSO show great potential to improve the performance

2.Material and Methods

- 3 types of SiPMs from Hamamatsu
- 2 pieces of LYSO:Ce crystals (3x3x3 mm³) with different surface finish, wrapped by different reflectors

- Source with 662 keV gamma-rays from ¹³⁷Cs
- Waveform sampling with CAEN DT5751

Higher PDE, rough surface finish, silicone grease coupling and Teflon wrapper will contribute to a optimal energy resolution

180 ADC channe

4. Energy Resolution with Saturation Correction

Considering that the response of SiPMs will deviate from linearity in the case of high light intensity, a preliminary saturation correction method is applied to obtain the actual energy resolution

31 keV, 81 keV and 356 keV γ from ¹³³Ba, 511 keV and 1274 keV γ from ²²Na, 32 keV and 662 keV γ from ¹³⁷Cs, and 1332 keV γ from ⁶⁰Co were used to characterize the linearity.

Fitting Methods	Parameters	25 um SiPM	50 um SiPM
Global Fitting	Mean/keV	755.6	694.2
	ER/%	9.3	8.4
Local Fitting	Mean/keV	660.9	658.2
	ER/%	6.9	7.6

Deposited energy obtained from:

$$E = \ln \left(\frac{C_1 \cdot N_{\text{eff}}}{C_1 \cdot N_{\text{eff}} - ADC} \right) \cdot \frac{N_{\text{eff}}}{C_0}$$

- $ADC = C_1 \cdot N_{\text{eff}} \cdot (1 e^{-C_0 \cdot E/N_{\text{eff}}})$
- blue line: the global fitting (i.e. all data points are used for fitting)
- red line: the local fitting (i.e. only data points between 200 keV and 700 keV are used for fitting)
- In the case of local fitting, the ER obtained by the SiPM of 25 um microcells is better than that of 50 um microcells

5.Conclusion

- The measurement conditions for the optimized energy resolution have been studied, including the wrapper, the coupling method, • the type of SiPMs and the operating voltage of SiPMs
- A preliminary saturation correction method was developed and the energy resolution of 662 keV gamma-rays measured by the SiPM of 50 µm microcells can reach 7.6% after the correction

[1] S. Yin, H. Guo, M. Yan, et al., "Study on performance test plan of inorganic scintillator", Opto-Electron Eng, vol. 48, no. 6, Jun. 2021. [2] M. Moszyński, A. Syntfeld-Kazuch, L. Swiderski, et al., "Energy resolution of scintillation detectors", Nucl. Instrum. Methods A, vol. 805, pp. 25-35, Jan. 2016.

