# **RCs of Meson Decays with Lattice Method**

Pengxiang Ma<sup>@\*</sup>

\*Institute of Theoretical Physics, Peking University, <sup>@</sup>2001110084@pku.edu.cn

#### Background

lattice-setup

Meson decays could provide the calculation of some basic parameters of the Standard Model, like the CKM matrix elements. The  $|V_{ud}|$  could be derived from the  $\pi_{e3}$  decays, while the  $|V_{us}|$  from the  $K_{\ell 3}$  decays.

Ensemble  $m_{\pi}$ [MeV] LT $a^{-1}$ [GeV]  $N_{conf}$  $N_r$  $\Delta t/a$ 24D141.2(4)24641.015461024832D141.4(3)32641.015322048832D-fine143.0(3)32641.37871102410

With the uncertainty reaching  $\sim 1\%$ , the electroweak(EW) Radiative Corrections (RCs) becomes non-negligible.

#### Introduction

Among various EWRCs, the electroweak radiative corrections involving the axial-vector current become important and ultimately dominate the theoretical uncertainties. The relevant Feynman diagram to the axial  $\gamma W$ -boson box contribution  $\Box_{\gamma W}^{VA}$  is shown below.



| 48I | 135.5(4) 48 96  | 1.730 | 28 | 1024 | 12 |
|-----|-----------------|-------|----|------|----|
| 64I | 135.3(2) 64 128 | 2.359 | 62 | 1024 | 18 |

Table 1: Ensembles used in this work.

### **Numerical results**



Figure 1:  $\gamma W$ -box diagrams.

# Methodology

We perform the first realistic lattice QCD calculation of the  $\gamma W$ -box correction to the pion semileptonic decay.

- For small  $Q^2$ , lattice QCD can determine  $M_H(Q^2)$ .
- For large  $Q^2$ , we utilize the operator product expansion.

Computations for this work were carried out on the Blue Gene/Q (BG/Q) Mira computer at the Argonne Leadership Class Facility and Tianhe 3 prototype at Chinese National Supercomputer Center in Tianjin.

Figure 2:  $M_{\pi}(Q^2)$  as a function of  $Q^2$ .

 $\delta = 0.0334(10)_{\text{LECs}}(3)_{\text{HO}} \to 0.0332(1)_{\gamma W}(3)_{\text{HO}}$  $|V_{ud}| = 0.9739(28)_{\text{exp}}(5)_{\text{th}} \to 0.9740(28)_{\text{exp}}(1)_{\text{th}}$ 

# Conclusion

- The uncertainty of the theoretical prediction for the pion semileptonic decay rates is reduced by a factor of 3.
- For Kaon decays, the application could give the LECs of ChPT with reasonable uncertainty estimate.
- The technique presented in this work can be straightforwardly generalized to a lattice calculation of the nucleon

We use five lattice QCD gauge ensembles with multiple lattice spacings and volumes at the physical pion mass to control the continuum and infinite-volume limits.

- $\gamma W$ -box corrections.
- This work has been published on Phys. Rev. Lett. 124, 192002 (2020) and Phys. Rev. D 103, 114503 (2021).



#### Institute of Theoretical Physics, PKU