

PR ton Radius

High Precision Measurement of the Proton Charge Radius at JLab

- Weizhi Xiong (熊伟志)
- Shandong University
- For the PRad Collaboration
- 中国物理学会高能物理分会
- August 11th 2022

- Introduction and the proton charge radius puzzle
- PRad experiment and results
- PRad-II experiment and projection
- Summary

Introduction

- Nucleons (protons and neutrons) make up over 99% of the mass of visible universe
- Proton charge radius:
 - 1. A fundamental quantity for proton
 - 2. Important for understanding how QCD works
 - 3. Critical in determining Rydberg constant
 - 4. An important physics input to the bound state QED calculation for atomic hydrogen energy levels

Introduction

- Nucleons (protons and neutrons) make up over 99% of the mass of visible universe
- Proton charge radius:
 - 1. A fundamental quantity for proton
 - 2. Important for understanding how QCD works
 - 3. Critical in determining Rydberg constant
 - 4. An important physics input to the bound state QED calculation for atomic hydrogen energy levels
- Methods to measure the proton charge radius:
 - I. Hydrogen spectroscopy (atomic physics)
 - Ordinary hydrogen
 - Muonic hydrogen
 - 2. Lepton-proton elastic scattering (nuclear physics)
 - *ep* elastic scattering (like PRad)
 - \succ µp elastic scattering (like MUSE)

Unpolarized ep Elastic Scattering

• Elastic ep scattering, in the limit of Born approximation (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE'\sin^2\frac{\theta}{2} \qquad \tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

• Structure-less and spin-less proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$

Taylor expansion of G_E at low Q^2

$$G_{E}^{p}(Q^{2}) = 1 - \frac{Q^{2}}{6} \langle r^{2} \rangle + \frac{Q^{4}}{120} \langle r^{4} \rangle + \dots$$

Derivative at low Q² limit

$$\left| \left\langle r^2 \right\rangle = - \left. 6 \left. \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 = 0} \right|_{Q^2 = 0}$$

Unpolarized ep Elastic Scattering

• Elastic ep scattering, in the limit of Born approximation (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE'\sin^2\frac{\theta}{2} \qquad \tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

• Structure-less and spin-less proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$

- G_E^p and G_M^p can be extracted using Rosenbluth separation
- For PRad, cross section dominated by G_E^p

Taylor expansion of
$$G_E$$
 at low Q^2
$$G_E^p(Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots$$

Derivative at low Q² limit

$$\left| \left\langle r^2 \right\rangle = - \left. 6 \left. \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 = 0} \right|_{Q^2 = 0}$$

Proton Charge Radius Puzzle

PRad Experiment Overview

PRad goal: Measuring proton charge radius using unpolarized ep elastic scattering

- Covers two orders of magnitude in low Q² with the same detector setting
 - ➤ ~2x10⁻⁴ 6x10⁻² GeV²
- At each beam energy, different *Q*² data collected at the same time

PRad Experiment Overview

PRad goal: Measuring proton charge radius using unpolarized ep elastic scattering

- Covers two orders of magnitude in low Q² with the same detector setting

 ~2x10⁻⁴ - 6x10⁻² GeV²
- At each beam energy, different *Q*² data collected at the same time
- Unprecedented low $Q^2 (\sim 2 \times 10^{-4} \text{ GeV}^2)$

PRad Experiment Overview

PRad goal: Measuring proton charge radius using unpolarized ep elastic scattering

- Covers two orders of magnitude in low Q² with the same detector setting
 ~2x10⁻⁴ - 6x10⁻² GeV²
- At each beam energy, different Q² data collected at the same time
- Unprecedented low $Q^2 (\sim 2 \times 10^{-4} \, \text{GeV}^2)$
- Normalize to the simultaneously measured Møller scattering process
- Windowless H₂ gas-flow target removes major background source
- Extreme forward angles (0.7° to 7°), minimize G_M contribution

Jefferson Lab

- Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA
- Completed 6 GeV to 12 GeV upgrade in 2015
- 4 experimental Halls
- PRad data taking May/June 2016, with 1.1 GeV and 2.2 GeV electron beams

• vacuum chamber pressure: 0.3 mTorr

- Two large area
 GEM detectors
- Small overlap region in the middle
- Excellent position resolution (72 μm)

Hall R

- Hybrid EM calorimeter (HyCal)
 - Inner 1156 PbWO₄ modules
 - Outer 576 lead glass modules
- Scattering angle
 coverage: ~ 0.7° to 7.0°
- Full azimuthal angle coverage
- High resolution and efficiency

Hall

Analysis – Event Selection

Event selection method

- Hit matching between GEMs and HyCal
- 2. Apply angle dependent energy cut based on kinematics
 - 1. Cut size depend on local detector resolution
- 3. For *ee*, requiring double-arm events, and apply additional cuts
 - 1. Elasticity
 - 2. Co-planarity
 - 3. Vertex z

Cluster energy E' vs. scattering angle θ (1.1GeV)

Proton Electric Form Factor G_E^p

 $r_p = 0.831 + -0.007 \text{ (stat.)} + -0.012 \text{ (syst.)} \text{ fm}$

PRad Proton Charge Radius

PRad result: $r_p = 0.831 + 0.007$ (stat.) + 0.012 (syst.) fm

Weizhi Xiong

11

PRad-II Experiment

- JLab PAC 48 approved PRad-II (PR12-20-004) with the highest scientific rating "A"
- Goal: reach ultra-high precision (~4 times smaller total uncertainty), resolve tension with modern e-p scattering results, examine μ H spectroscopic results

PRad-II Experiment

- Adding tracking capacity (second GEM plane)
 - Improve GEM efficiency measurement
 - Vertex-z reconstruction for *ep* to reject upstream background

- Upgraded HyCal with all high resolution PbWO₄ modules
 - Better energy resolution: 2.4% v.s. 6.0% from LG
 - Better position resolution
 - Better non-linearity response

- Upgraded HyCal with all high resolution PbWO₄ modules
 - Better energy resolution: 2.4% v.s. 6.0% from LG
 - Better position resolution
 - Better non-linearity response

- Upgraded HyCal with all high resolution PbWO₄ modules
 - Better energy resolution: 2.4% v.s. 6.0% from LG
 - Better position resolution
 - Better non-linearity response

Currently seeking funding or used modules for the upgrade

spectrum for $6.0^{\circ} < \theta < 7.0^{\circ}$ ($Q^{2} \sim 0.059 \text{ GeV}^{2}$)

- Convert to FADC based readout for HyCal
- Four times smaller stat. uncertainty

- Better RC calculating including NNLO diagrams
- New scintillating detectors, help reaching Q² ~ 10⁻⁵ GeV² (new record!)

PRad-II Experiment – Projected Result

Other Research Opportunities with PRad Setup

- Search for 3-60 MeV hidden sector particle
 - Approved 2022, rated A
- Neutral pion transition form factor
 - Approved 2022, rate A-
- Deuteron charge radius (DRad) experiment
 - Plan to submit next year

Summary

- The PRad collaboration carried out the first electron scattering experiment using a non-magnetic spectrometer approach – calorimeter and GEMs
- The PRad result: $r_p = 0.831 + -0.007$ (stat.) + 0.012 (syst.) fm
- Planning on follow-up experiment, aim for ~4 times of improvement on total r_p uncertainty
 - 1. New detectors and upgrades: 2nd GEM plane, possible all PbWO₄ calorimeter, new scintillating detector
 - 2. New FADC readout system for the calorimeter
 - 3. 4 times smaller stat. uncertainty
 - 4. Improved RC calculating including NNLO

This work was supported in part by NSF-MRI grant PHY-1229153 and US DOE grant DE-FG02-03ER41231

Backup

PRad-II Uncertainty Budget

Item	PRad δr_p [fm]	PRad-II δr_p [fm]	Reason
Stat. uncertainty	0.0075	0.0017	more beam time
GEM efficiency	0.0042	0.0008	2nd GEM detector
Acceptance	0.0026	0.0002	2nd GEM detector
Beam energy related	0.0022	0.0002	2nd GEM detector
Event selection	0.0070	0.0027	2nd GEM + HyCal upgrade
HyCal response	0.0029	negligible	HyCal upgrade
Beam background	0.0039	0.0016	better vacuum 2nd halo blocker vertex res. (2nd GEM)
Radiative correction	0.0069	0.0004	improved calc.
Inelastic ep	0.0009	negligible	-
G^p_M parameterization	0.0006	0.0005	HyCal upgrade
Total syst. uncertainty	0.0115	0.0032	
Total uncertainty	0.0137	0.0036	

Analysis – Background Subtraction

- Runs with different target condition taken for background subtraction and studies for the systematic uncertainty
- Developed simulation program for target density (COMSOL finite element analysis)

Analysis – Background Subtraction (2.2 GeV)

- ep background rate ~ 10% at forward angle (<1.1 deg, dominated by upstream beam halo blocker), less than 2% otherwise
- ee background rate ~ 0.8% at all angles

Residual hydrogen gas: hydrogen gas filled during background runs

Analysis – Background Subtraction (2.2 GeV)

- ep background rate ~ 10% at forward angle (<1.1 deg, dominated by upstream beam halo blocker), less than 2% otherwise
- ee background rate ~ 0.8% at all angles

Residual hydrogen gas: hydrogen gas filled during background runs

Extraction of ep Elastic Scattering Cross Section

• To reduce the systematic uncertainty, the ep cross section is normalized to the Møller cross section:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{ep} = \left[\frac{N_{\mathrm{exp}}(ep \to ep \text{ in } \theta_i \pm \Delta \theta_i)}{N_{\mathrm{exp}}(ee \to ee)} \cdot \frac{\varepsilon_{\mathrm{geom}}^{ee}}{\varepsilon_{\mathrm{geom}}^{ep}} \cdot \frac{\varepsilon_{\mathrm{det}}^{ee}}{\varepsilon_{\mathrm{det}}^{ep}}\right] \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{ee}$$

- Method 1: bin-by-bin method taking *ep/ee* counts from the same angular bin
 - Cancellation of energy independent part of the efficiency and acceptance
 - Limited converge due to double arm Møller acceptance
- Method 2: integrated Møller method integrate Møller in a fixed angular range and use it as common normalization for all angular bins
- Luminosity cancelled from both methods
- Bin-by-bin range: 0.7° to 1.6° for 2.2 GeV, 0.75° to 3.0° for 1.1 GeV. Larger angles use integrated Møller method

Searching the Robust fitters

- Various fitters tested with a wide range of G_E parameterizations, using PRad kinematic range and uncertainties (X. Yan *et al.* Phys. Rev. C98, 025204 (2018))
- Rational (1,1), 2nd order z transformation and 2nd order continuous fraction are identified as robust fitters with also reasonable uncertainties
- Typically a floating parameter n is included to take care normalization uncertainties

Introduction | PRad and Apparatus | Analysis and results | Future Improvements

Proton Electric Form Factor G_E^p

- n_1 and n_2 obtained by fitting PRad electric form factors to $f(Q^2) = \begin{cases} n_1 G_E^p(Q^2), \text{ for } 1.1 \text{ GeV data} \\ n_2 G_E^p(Q^2), \text{ for } 2.2 \text{ GeV data} \end{cases}$
- G_E^p as normalized electric form factor: $\begin{cases} f(Q^2)/n_1, \text{ for } 1.1 \text{ GeV data} \\ f(Q^2)/n_2, \text{ for } 2.2 \text{ GeV data} \end{cases}$
- $G_E^p(Q^2) = \frac{1+p_1Q^2}{1+p_2Q^2}$, the rational (1,1), a robust fitter based on X. Yan *et al.* Phys. Rev. C98. 025204 (2018)

