

基于CLYC和CLLB的 中子伽马多模探测器性能研究

韩纪锋, 宋瑞强, 任飞旭, 颜莜字 hanjf@scu.edu.cn 四川大学 2022.8.10

• 研究背景

- 中子、伽马甄别研究
- 堆积脉冲甄别
- 快中子能谱探测
- 小结

• 中子伽马多模探测器

- ▶ 混合辐射场监测、辐射剂量与防护...
- ▶ CLYC、CLLB、塑闪
- > 晶体: CapeSym、中国计量大学、Eljen
- > 高速波形采样
- 特点
 - > 热中子高效探测, %Li富集度95%
 - ▶ 良好能量分辨,~4%@662 keV
 - > 良好PSD能力
 - ▶ 实现快中子探测, Cl、H

• 基于高速采样卡

- > TELEDYNE, ADQ12, 1Gsps
- ▶ 自制基于python的DAQ程序

• DAQ主要功能

- > 高速数据采集
- ▶ 实时ng甄别
- ▶ n、g计数率
- ≻ n、g能谱

▶ 符合

CLYC晶体的能量分辨

- 热中子能量分辨约1.8%
- 伽马能量分辨
 - ≻ 5.8%@662keV
 - ▶ 具有良好的线性0.06-3 MeV

CLYC晶体信号特征

• 3类典型信号

- 1. 超慢信号, us
- 2. 慢信号,百ns
- 3. 快信号,10ns(PMT噪 声)
- 中子
 - ▶ 以T1(超慢信号)为主
- 伽马
 - > 以T2(快信号)为主
 - ▶ 约2%超慢信号干扰

Am-Be源结果

CLYC信号拟合

- 多指数拟合4种成分
 平均信号扣除噪声干扰
- 中子信号特征
 - ▶ 信号很宽
 - 上升沿较慢、下降沿很慢
 - ▶ 下降沿缺少10、43ns成分, n-g甄别依据
- 问题
 - » 拟合自由度大,结果不唯**一**
 - 月2000个脉冲的平均值进行 拟合,降低噪声
 - ▶ 初值选择很重要

$$Y = -A_1 e^{-\frac{t}{\tau_1}} + A_2 e^{-\frac{t}{\tau_2}} + A_3 e^{-\frac{t}{\tau_3}} + A_4 e^{-\frac{t}{\tau_4}}$$

	Tau_1	Tau_2	Tau_3	Tau_4
Gamma	7.35	918	10.2	43
Neutron	17.8	3193	570	-

11

n-γ甄别

- CLYC晶体的PSD方法
 - ▶ n下降沿无10-43ns成分
 - > 用下降沿快速下降部分占比
 - ▶ 占比较小为n
 - 占比较大为 γ
- 结果
 - ▶ 甄别优度FOM值2.3
 - > CLYC晶体具有极好的n-γ 甄 别能力

$$FOM = \frac{|\mu_n - \mu_g|}{(\sigma_n + \sigma_n) * 2.355}$$

psd分母区间变化影响较小

基于神经网络的n-γ甄别

● 全连接网络FCNN

- 全谱数据输入(归一化)
- ▶ 2个中间全连接层,节点为200和10, ReLU激活
- ▶ Sigmoid输出: n(1), g(0)
- > 共404,241个可训练参数

● 数据

▶ n, g各约1万个; 训练集64%, 验证集16%, 测试集20%

结果

- 约20次训练后稳定,精度~100%
- ➢ 测试精度[~]100%;
- ▶ 准确识别2个g信号(PSD方法 误判为n,峰值饱和,大噪声)

n(1)

g (0)

堆积情况下的信号甄别-网络模型

- 计数率较高,存在信号堆积
 - > 全谱数据输入(归一化)
 - ▶ 6种信号类型: n, g, n+g, n+n, g+g, g+n
- 构建了2个网络
- ▶ 全连接网络FCNN,约400k参数 ▶ 卷积网络CNN,约4k参数 Input ▶数据 Input Conv1D 相同数据源 \geq Dense 200 BatchNorm ReLu 训练集64% \geq $\times 6$ ReLu Dropout 验证集16% \succ Dense 10 MaxPool1D ReLu > 测试集20% Dense Softmax Softmax g+g g+n n+g n g+n n+g n+n g+g g n g n

11

堆积情况下的信号甄别-结果

- 总体识别准确率
 - > FCNN网络: 98.7%; CNN网络: 99.2%
 - > 各类波形的误判率均小于5%
 - > CNN网络性能更好,参数更少,更适合
- 误判率
 - n+n、n+g误判率几乎0%;
 - n、g误判率小于1%;
 - g+n误判率2%;
 - g+g误判率3.6%;
- 误判原因
 - g、n幅度较小时,易被噪声 干扰

Nucl. Inst. Meth. A 1028 (2022) 166328

堆积脉冲实验数据

基于加速器单能中子源 中子能量1.5MeV,产额约1E9 实现了堆积脉冲psd甄别 黑色:长堆积,>500ns 红色:短堆积,≤500ns

mg avg psd

实现基于上升沿的寻峰算法、堆积脉冲Ng甄别

基于ANN的堆积脉冲psd甄别

- 监督学习
 - 标签:滤波寻峰算法生成 \succ
 - ▶ 训练CNN、Resnet网络
 - > 残差网络(Resnet)准确率更好

1.0

0.8

0.6

0.4

0.2

0.0

- 结果
 - 86%准确度 \succ
 - ▶ ANN准确度更优
 - > 重新修改标签
- 识别错误原因 小脉冲、距离太近

CLYC用于快中子探测

• 探测原理

- ▷ CLYC的Li6, CI具有相对较大快 中子反应截面
- Li6的热中子截面极大,存在很高的热中子峰(3.2MeVee), 该区域的快、热中子难以区分

CLYC快中子探测(5.2 MeV)

- 观测到多个峰
 - ▶ 3.2MeV, 热中子
 - > 5. 2MeV, ³⁵Cl (n, p) ³⁵S
 - > 6.9MeV, ⁶Li(n, t)⁴He
 - > 2.8MeV, ${}^{35}Cl(n,\alpha){}^{35}P*$
 - ▶ FOM值约1.4

0.

0.

0.05

R psd 0.15

 10^{3}

10²

10

Entries

2.8

3.2

5.2

6.9

10

53054

0.1211

0.04034

3522/220

 585.7 ± 7.0

853.2 ± 5.7

0.3

 0.1437 ± 0.0001

CLYC快中子探测(1.4 MeV)

• 快中子峰

- ▶ 3.2MeV, 热中子
- > 1.8MeV, ${}^{35}CI(n, p){}^{35}S$
- ▶ 6.1MeV, 热中子叠峰
- ▶ FOM值约1.3

CLYC快中子能谱探测

• Cl (n, p) S反应探测快中子

- > 线性良好,可用于快中子能谱探测
- 》能量分辨率约15%, quenching factor约0.9
- ▶ 快中子FOM值稍差于热中子
- ▶ 在3MeV存在热中子干扰

CLLB中子伽马探测

- 中国计量大学研制
 - ▶ 17% Li6富集度,密度4.2 g/cm³
- 中子伽马多模探测
 - ▶ 基于Li6的热中子探测
 - > 基于Br的快中子探测(>3MeV)
 - > 优良的伽马分辨率
 - > 良好的中子、伽马甄别能力

Cs₂LiLaBr₆:Ce

CLLB快中子探测(5.2 MeV)

仅观测到热中子峰
 ng甄别能力差于CLYC
 热中子效率偏低
 能量分辨优于CLYC

塑料闪烁体

• 塑料闪烁体

基于弹性散射实现快中子探测
 无重元素,伽马全能峰不可见
 中子、伽马甄别效果稍差

小结

- 研究了CLYC、CLLB、PS中子伽马多模探测器的性能
 - ▷ CLYC综合性能最优,实现快中子、热中子、伽马能 谱探测
 - > 热中子、快中子信号存在一定的差异
 - > 实现了堆积脉冲的psd甄别
 - ▶ ANN网络在psd甄别领域优势显著

- 感谢科技部、基金委、四川省科技厅等的资助
- 感谢合作者
 - ▶ 高能所: 钱森, 王志刚, …
 - > 中国计量大学:秦来顺,…
 - ▶ 课题组成员:曲国峰、刘星泉、林炜平,…

>

- 欢迎到四川大学访问指导
- 谢谢!

