Strangeness Production at high baryon density region from STAR experiment

Yaping Wang (王亚平)

Central China Normal University (华中师大)

Collaborators: Yingjie Zhou, Guannan Xie, Yuehang Leung, Xin Dong, Nu Xu

- Introduction
- STAR Fixed Target Program (FXT)
- Strangeness production in 3 GeV Au+Au collisions from STAR
 - Strangeness spectra
 - Strangeness yields
 - Strangeness yield ratios
 - Kinetic freeze-out properties
- Summary and Outlook

Nuclear collisions at high baryon density

- What is the state of matter in the high μ_{B} region?
- What is its equation of state?
- What are its temperature and thermodynamic properties?
- Is there a first order phase transition to the QGP phase?
- Do we understand strangeness production in this region?

Sooraj R., SQM2022 talk

Nuclear collisions at high baryon density

- What is the state of matter in the high μ_{B} region?
- What is its equation of state?
- What are its temperature and thermodynamic properties?
- Is there a first order phase transition to the QGP phase?
- Do we understand strangeness production in this region?

Sooraj R., SQM2022 talk

• Light and strange hadron production and collectivity measurements are sensitive observables to answer these questions

Nuclear collisions at high baryon density

- What is the state of matter in the high μ_{B} region?
- What is its equation of state?
- What are its temperature and thermodynamic properties?
- Is there a first order phase transition to the QGP phase?
- Do we understand strangeness production in this region?

Sooraj R., SQM2022 talk

- Light and strange hadron production and collectivity measurements are sensitive observables to answer these questions
- Lots of experiments focus in the region!
- STAR Beam Energy Scan-II has completed data taking, with FXT program extending the reach to high baryon density region of $\mu_B \sim 750$ MeV and $\sqrt{s_{NN}}$ down to 3 GeV

STAR BES I and BES II

Au+Au Collisions at RHIC											
Collider Runs						Fixed-Target Runs					
	√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run		√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	157 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV		Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
						12	3.0 (3.85)	260 M, 2000 M	750 MeV	-1.05	Run-18, 21

Nu Xu, SQM2022 talk

Precision data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 750 < \mu_B < 25 \text{ MeV}$

FXT setup at STAR

Conventions:

beam-going direction is the positive direction In C.M. frame, for the 3 GeV collisions

Au-Target = 0.25mm thickness 1% interaction probability

Particle Identification

- TPC (dE/dx) and TOF (β) for pion, kaon and proton particle identification
- K⁻ PID: TPC+TOF, Hybrid TOF PID for K⁺
- Strange hadrons are reconstructed using invariant mass method

 $K_s^0 \to \pi^+ \pi^-, \qquad \phi \to K^+ K^-, \qquad \Xi^- \to \Lambda(\to p \pi^-) \pi^-$

Particle reconstruction

- KF Particle package is used for the strange hadron reconstruction to improve the signal significance KF Particle Finder: M. Zyzak, Dissertation thesis, Goethe University of Frankfurt, 2016
- Combinatorial backgrounds are reconstructed by the rotation/mixing method

Strange hadron spectra

- High statistics dataset and midrapidity acceptance
- p_T spectra well described by Blast Wave fits

$$\frac{d^2 N}{2\pi p_{\rm T} dp_{\rm T} dy} = A \int_0^R r dr m_{\rm T} \times I_0(\frac{p_{\rm T} \sinh \rho(r)}{T_{\rm kin}}) K_1(\frac{m_{\rm T} p \cosh \rho(r)}{T_{\rm kin}})$$

 T_{kin} : the kinetic freeze-out temperature $\langle \beta_T \rangle$: average transverse radial flow velocity n: the exponent of flow velocity profile, n=1 I_0 and K_1 are from Bjorken Hydrodynamic assumption

STAR K⁻, φ, Ξ⁻: Phys. Lett. B 831 (2022),137152

- Tracking efficiency and detector acceptance are estimated with GEANT simulations embedded into real events
- Alternative fit functions are used to estimate the systematic uncertainty in dN/dy

Strange hadron yields

- Rapidity dependent yields obtained from integrating data and Blast-wave function (or m_T exponential function) fits of spectra for the unmeasured p_T region
- UrQMD reproduces the yields of Λ except in the 40-60% centrality bin, but overestimates K_{s^0} , K^- , Ξ^- and underestimates ϕ mesons
- Λ/p ratio larger at mid-rapidity: constraints for strangeness and hypernuclei production at high μ_B 中国高能物理分会学术年会, 2022年8月 - 王亚平

Strange hadron yields vs N_{part}

- Strange hadron yields proportional to <N_{part}>^α, with α ~ 1.4, despite different production thresholds
- Ξ^- seems to deviate from the scaling trend
- Yields scale with total strangeness production: Percolation of meson cloud? Soft deconfinement?
 K. Fukushima, et al, Phys. Rev. D 102, 096017 (2020)

Strange hadron yield ratio

STAR Κ⁻, φ, Ξ⁻: Phys. Lett. B 831 (2022),137152

- Local strangeness conservation is required!
 → GCE to CE transition!
- Can help to constrain strangeness correlation length in the medium
- Default UrQMD failed to describe the data
- Transport models with high-mass resonance decay to ϕ and Ξ^- can describe the data

STAR BES-I: Phys. Rev. C 102 (2020) 34909 HADES: Eur. Phys. J. A (2016) 52: 178 UrQMD¹: Prog. Part. Nucl. Phys. 41 (1998) 225-370 UrQMD²: J. Phys. G: Nucl. Part. Phys. 43 015104 Thermal CE: Phys. Lett. B 603, 146 (2004)

Kinetic freeze-out properties

- A and K_s⁰: Similar value for freeze-out velocity but much lower temperatures at 3 GeV
- Freeze-out T_{kin} and $<\beta_{T}>$ for proton also show similar trend as Λ and K_{s}^{0} at 3 GeV
- Implying different EOS at freeze-out at 3 GeV: hadronic interaction dominant!

Summary

- Presented measurements on strangeness production in 3 GeV Au+Au collisions

 ✓ Precise centrality & rapidity dependence of yields
 ✓ φ/K⁻ and φ/Ξ⁻ show canonical suppression of strangeness Phys. Lett. B 831 (2022),137152
 ✓ Λ and K_s⁰ spectra indicate lower kinetic freeze-out temperature than pion, Kaon, proton at higher energy collisions SQM2022 talk
- At 3 GeV, the measured v₂ for all particles are negative and the NCQ scaling breaks, especially for positive charged particles *Phys. Lett. B 827 (2022),137003*
- The suppression of C₄/C₂ is consistent with fluctuations driven by baryon number conservation which indicates a hadronic interaction dominated region in the top 5% central Au+Au collisions at 3 GeV *Phys. Rev. Lett. 128 (2022), 202303*
- The freeze-out parameter (T_{kin}) of deuteron is systematically higher than that of proton at 3 GeV, which is different from higher energies QM2022 talk

→ All results from 3 GeV Au+Au collisions: particle production mechanism dominated by hadronic interactions

Outlook

- 2B Au+Au events at $\sqrt{s_{NN}}$ = 3 GeV collected in 2021
- High statistics data at high μ_B region from STAR BES II $\sqrt{s_{NN}}$ = 3 7.7 GeV, iTPC + eTOF
- Measurements of strangeness production at several different FXT energies ongoing, expect many more exciting results soon

Thanks for your attention! Many thanks to Organizers!