Unraveling Gluon Jet Quenching through J/ψ Production in Heavy-Ion Collisions

Shan-Liang Zhang

Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University

In collaboration with Jinfeng Liao, Guang-You Qin, Enke Wang, and Hongxi Xing

09 July. 2022

Outline

- Introduction
- ➢ Framework
- Numerical results
- ➢ Summary

Introduction

The Signatures of QGP:

- Global observables
- Strange enhancements
- Photon and dilepton measurements
- Early thermalization and flow
- Fluctuations and correlations
- The J/ ψ -meson
- Jet quenching

Jet quenching

X. N.Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).

Nuclear modification factor

 $R_{AA} = \frac{\sigma_{NN}}{\langle N_{bin} \rangle} \frac{d^2 N_{AA}/dp_T d\eta}{d^2 \sigma_{pp}/dp_T d\eta}$

-hadron: fundamental transport properties of QGP $\, \widehat{q} \,$

-jet: jet energy lose distributions.

K. M. Burke et al. (JET), Phys. Rev. C 90, 014909(2014)D. Everett et al. (JETSCAPE), Phys. Rev. Lett. 126,242301 (2021)Y. He, L.G. Pang, and X.N. Wang, Phys. Rev. Lett. 122, 252302 (2019),

Jet substructures

-Put insight into jet-medium interactions and properties of QGP; ATLAS,Phys. Rev. Lett. 123, 042001(2019) CMS, Phys.Lett.B 825 (2022) 136842

- Separate identification of quark and gluon jet quenching(color-charge)
 - -multivariate analysis of jet substructure observables
 - -averaged jet charge
 - -Z/ γ -tagged jet/hadron....

Y.T. Chien and R. Kunnawalkam Elayavalli, arXiv:1803.03589; S.Y. Chen, B.W. Zhang, and E.K. Wang, Chin. Phys.C 44,024103 (2020), S.L. Zhang, T. Luo, X.N. Wang, and B.W. Zhang, Phys. Rev. C 98, 021901 (2018),

What and why Quarkonium?

- **Early creation:** experience entire evolution of quark-gluon plasma
- **Proposed signature of deconfinement**: quark-antiquark potential colorscreened by surrounding partons \rightarrow *dissociation*

Temperature T>Td

- J/ψ suppression was proposed as a direct proof of QGP formation PLB 178 (1986) 416

Temperature T<Td

vacuum

J/w

Quarkonia are good probes of the medium evolution

J/ψ in jets in pp

• Parton-parton scattering not enough to describe J/ ψ production.

• Model including J/ψ produced in parton showers well successfully describe LHCb data. PRL 119, 032002 (2017)

How do we study quarkonia?

Leading Power Factorization

 $D_{i \to J/\psi}(z) = \sum \langle \mathcal{O}^{J/\psi}(n) \rangle d_{i \to c\bar{c}(n)}$

Leading Power factorization – fragmentation dominates ~ $1/p_T^4$

+

Perturbative regime (SDCs) x Non-perturbative effects (LDMEs)

Fragmentation Mechanisms Dominate at high p_T

NRQCD Factorization

 $d\sigma^{J/\psi} = \sum d\sigma^i \otimes D_{i \to J/\psi}(z)$

How do we study Quarkonium?

Gluon Fragmentation Improved PYTHIA (GFIP)

 $pp \rightarrow g/c + X$

00000

Bodwin PhysRevLett.113.022001; PhysRevD.93.034041

100

p_T (GeV/c)

 10^{-3}

10

PRL 119, 032002 (2017)

 \geq Gluon fragmentation dominates (> 70%) the high- p_T J/ ψ production.

Linear Boltzmann Transport (LBT) model

Linear Boltzmann jet Transport

Elastic collision + Induced gluon radiation.

Follow the propagation of recoiled parton.

Back reaction of the Boltzmann transport.

H. Li, F. L, G. I. Ma, X. N. W
and
Y. Z, PhysRevLett.106.012301;
X. N. Wang and Y. Zhu,
PhysRevLett.111.062301;
Y. He, T. Luo, X. N. Wang and
Y. Zhu, PhysRevC.91.054908.

$$p_{1} \cdot \partial f_{a}(p_{1}) = -\int \frac{d^{3}p_{2}}{(2\pi)^{3}2E_{2}} \int \frac{d^{3}p_{3}}{(2\pi)^{3}2E_{3}} \int \frac{d^{3}p_{4}}{(2\pi)^{3}2E_{4}} \\ \times \frac{1}{2} \sum_{b(c,d)} [f_{a}(p_{1})f_{b}(p_{2}) - f_{c}(p_{3})f_{d}(p_{4})] M_{ab \to cd}|^{2} \\ \times S_{2}(s,t,u)(2\pi)^{4} \delta^{4}(p_{1} + p_{2} - p_{3} - p_{4})$$

Elastic Scattering--Complete set of 2-2 scattering processes.

Radiation -- Higher Twist: Guo and Wang (2000), Majumder (2012); Zhang, Wang and Wang (2004). $\frac{dN_g}{dxdk_{\perp}^2 dt} = \frac{2\alpha_s C_A P(x)k_{\perp}^4}{\pi (k_{\perp}^2 + x^2 M^2)^4} \hat{q} \sin^2\left(\frac{t - t_i}{2\tau_f}\right)$

LBT: light/heavy flavor hadron, single inclusive jets, γ-hadron/jet. T. Luo, S. Cao, Y. He and X. N. Wang, arXiv:1803.06785; W. Chen, S. Cao, T. Luo, L. G. Pang and X. N. Wang, Phys. Lett. B 777, 86 (2018); S. Cao, T. Luo, G. Y. Qin and X. N. Wang, Phys. Rev. C 94, no. 1, 014909 (2016).

Large $p_T J/\psi$ suppression in Pb+Pb:

(8)

3(

 $v_2(p_T) \equiv \langle \cos(2\phi) \rangle = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_x^2} \right\rangle$

 \succ Gluon energy loss dominate suppression of large $p_T J/\psi$ suppression and elliptic flow v_2 .

Gluon and Charm quark energy loss in Pb+Pb:

				α_c		β_c		Υc			
	0.4	-	0 	5	10	0.5 1.0 1	.5 0.0	0.2 0.4	0.6	0.8	
Ľ	0.3	-	+		+		+	627		- 7.5	0
ğ	0.2	- ~	+	~	+		+	3		- 5.0	ğ
	0.1		$\gamma + $	\sim	∽_+!		+			- 2.5	
	0.0			· · · ·	- 1					0.0	
	1.5	-	÷		ł		+			- 1.5	
β_q) 1.0	-	+	Λ	ł		+			- 1.0	$\beta_{\rm C}$
	0.5		- T	$ \rangle$	ł	\wedge	+			- 0.5	
	0.8		/						+	12	
	0.6	-	÷		ł		÷			- 9	
Yg	0.4	-	-		ł	\wedge	÷			- 6	χ_{c}
	0.2	-	+		ł		÷	\frown		- 3	
	0.0) 5	10 0	.5 1.0 1		0.2 0.4 0	. 0.8	0.2 0.4	0.6	 0.8	
		$lpha_g$		$oldsymbol{eta}_g$		γ_g					

(0 - 10%)5.02 TeV									
	α	eta	γ						
Gluon	6.46 ± 1.51	$0.62 {\pm} 0.06$	$0.40 {\pm} 0.03$						
Charm	5.77 ± 2.24	$0.47 {\pm} 0.16$	$0.38 {\pm} 0.08$						

Summary

- Based on the leading power NRQCD and the LBT model, we find that high $p_T J/\psi$ production in AA collisions can be served as a robust probe to the gluon jet quenching.
 - -The gluon fragmentation dominates (> 70%) the high-pT J/ ψ production.
 - -high- p_T J/ ψ R_{AA} and v_2 are mainly driven by the gluon energy loss effect.

We have quantitatively extracted the fraction of average energy loss $\langle \Delta p_T \rangle / p_T$ and the energy loss distributions W(x) for the gluons in QGP.

J/ψ in jets in PbPb

