

Update on Geant4 Simulation of Scintillating Glass

<u>Dejing Du</u>, Yong Liu, Baohua Qi January 19, 2022

Part I

Optical Simulation of single scintillating glass tile

Cosmic ray measurements : setup

- Scintillating glass: #7
 - $4.5 \times 4.5 \times 3.5 mm^3$, ESR wrapping
- SiPM: S13360-6025PE(HPK)
 - $6 \times 6 mm^2$, 25µm pixel pitch
 - Bias voltage: 57.57V
- Coincidence with two plastic scintillator(1×1 cm²)

3

Optical simulation: setup in Geant4

- Geometry setup
 - Scintillating glass $(4.5 \times 4.5 \times 3.5 mm^3, ESR wrapping)$
 - Coupling agent: Air
 - SiPM($6 \times 6 mm^2$)
- Properties of scintillating glass
 - Component: $25SiO_2 30B_2O_3 10Al_2O_3 34Gd_2O_3$: $1Ce^+$
 - Density: 4.94 g/cm^3
 - Refractive index: 1.67
 - Transmission: 63%
 - Emission peak: 394 nm
 - Light yield: 881 ph/MeV (Based on the data of the measurements by Zhehao Hua)

1GeV mu- 🔪

Glass

MIP response: measurements vs simulation

2022/1/19

MIP response: measurements vs simulation

- Add bubbles to the simulation
- Adjust light attenuation length(50LAL) and roughness(0.0001)

Institute of High Energy Physics Chinese Academy of Sciences

Optical simulation: vary tile length

- 50LAL, roughness = 0.0001
- With bubbles
- Tile thick = 0.3cm

2022/1/19

Part II

Simulation of scintillating glass for HCAL

2022/1/19

Impact of sampling ratio

- Fixed nuclear interaction length
 - Scintillating Glass: λ=22.437cm, Steel: λ=16.945cm
- Incident particle: kaon0L(1-100GeV)

Homogeneous 40*40*40mm3 cube Incident particle: 10 GeV, gamma Scintillating Glass 105 104 10^{3} 10^{2} 10 log₁₀(E_{step}/MeV)

- 40*40*40mm3 cube
- Incident particle: 10 GeV, pi-

- Homogeneous
- 40*40*40mm3 cube
- Incident particle: 10 GeV, neutron

