

F. lemmi

Introduction

UL2016_pre-VFP

JL2016_postV

201

Conclusions

ttbar resonance

Trigger studies with UL2016 pre/postVFP & ttbarRes datacard

Huiling Hua¹ **Fabio lemmi**¹ Duncan Leggat² Hongbo Liao¹ Hideki Okawa² Yu Zhang²

¹Institute of High Energy Physics (IHEP), Beijing

²Fudan University, Shanghai

March 9, 2022

F. lemmi

Introduction

UL2016_pre-VFP

UL2016_postV

2018

Conclusions

ttbar resonance

4tops

Hopefully no major changes when switching to UL • **UL2016** pre/postVFP are downloaded and ready \implies start from them Today's plots implement missing items from last time Apply needed SFs: Muon ID • No ele ID: select events with == 1 leptons, == 1 muon Tau ID • b tagging (FixedWP scale factors) Evt weight. PU weight, prefiring weight ttbb correction

• Goal is to repeat previous trigger studies

Introduction

۲

Trigger studies + datacard

E lemmi

Introduction

UL2016 pre-

Trigger efficiency studies

- Compare results for data and MC, extract trigger SF if needed
- Trigger efficiency definition:

$$arepsilon(\mathbf{v}) = rac{\mathrm{N}_{\mathrm{trig+presel}}}{\mathrm{N}_{\mathrm{presel}}} (\mathbf{v})$$

- N.B.: in data, we never have all the events that pass the offline preselection
- In data, events are always collected with a trigger
 - In other words, denominator meaningless for data

Trigger studies + datacard

F. lemmi

Introduction

UL2016_pre-VFP

UL2016_postV

2018

Conclusions

Trigger efficiency studies

- We need an unbiased sample of events
- This should be **collected with a reference trigger** with looser and (if possible) orthogonal criteria
- Then the efficiency definition becomes

$$arepsilon(m{
u}) = rac{\mathrm{N}_{\mathrm{trig}+\mathrm{presel}+\mathrm{reference}}}{\mathrm{N}_{\mathrm{presel}+\mathrm{reference}}}(m{
u})$$

which makes sense for data as well

• Obviously the **reference should be unbiased**, i.e., should not change MC efficiency distribution

Trigger studies + datacard

F. lemmi

Introduction

UL2016_pre-VFP

UL2016_postV

2018

Conclusions

Pre-UL results

- nJets vs H_T trigger efficiency
- Left: data/MC efficiency ratio; right: corresponding errors
- Add $H_T > 400 \text{ GeV}$ cut to analysis selection to make trigger efficient
- Use these histograms as trigger efficiency scale factors and uncertainties

F. lemmi

Introduction

UL2016_pre-VFP

UL2016_postV

2018

Conclusions

ttbar resonance

UL2016 preVFP

1D trigger efficiency plots

 Trigger choice: unchanged wrt preUL • OR of: HLT PFHT450 SixJet40 BTagCSV p056 HLT_PFHT400_SixJet30_DoubleBTagCSV_p056 • HLT PFJet450 • Reference triggers: OR of HLT IsoMu24 HLT_IsoMu27 Selection: Preselection • == 1 ℓ . == 1 μ Designed to have reference firing

Trigger studies + datacard

E lemmi

Introduction UL2016 pre-

VFP

UL2016_postV

2018

Conclusions

ttbar resonance

F. lemmi (IHEP)

HL [GeV]

0.2

2D plots: checking the reference trigger

- nJets vs H_T trigger efficiency
- Left: MC/MCtruth efficiency ratio; right: corresponding errors
- ${\, \bullet \,}$ The reference is unbiased in 2D too above 400/500 GeV

2D plots: trigger efficiency in data

- nJets vs H_T trigger efficiency in data
- Left: trigger efficiency; right: corresponding errors
- Decent increase in efficiency in some bins

2D plots: trigger efficiency in MC

- nJets vs H_T trigger efficiency in data
- Left: trigger efficiency; right: corresponding errors
- Efficiency higher in MC

2D plots: data/MC efficiency ratio

- nJets vs H_T data/MC efficiency ratio
- Left: trigger efficiency; right: corresponding errors
- Not very different from previous results
- Somehow bigger errors and a bit more spiky (lower data stats?)

F. lemmi

Introduction

UL2016_pre-VFP

UL2016_postV

2018

Conclusions

ttbar resonance

UL2016 postVFP

1D trigger efficiency plots

 Trigger choice: unchanged wrt postUL • OR of: HLT PFHT450 SixJet40 BTagCSV p056 HLT_PFHT400_SixJet30_DoubleBTagCSV_p056 • HLT PFJet450 • Reference triggers: OR of HLT IsoMu24 HLT_IsoMu27 Selection: postselection • == 1 ℓ , == 1 μ Designed to have reference firing

Trigger studies + datacard

F. lemmi

Introduction

UL2016_pre-VFP

UL2016_postV

2018

Conclusions

ttbar resonance

F. lemmi (IHEP)

HL [GeV]

2D plots: checking the reference trigger

- nJets vs H_T trigger efficiency
- Left: MC/MCtruth efficiency ratio; right: corresponding errors
- $\bullet\,$ The reference is unbiased in 2D too above 400/500 GeV

2D plots: trigger efficiency in data

- nJets vs H_T trigger efficiency in data
- Left: trigger efficiency; right: corresponding errors
- Decent increase in efficiency in some bins

2D plots: trigger efficiency in MC

- nJets vs H_T trigger efficiency in data
- Left: trigger efficiency; right: corresponding errors
- Efficiency higher in MC

2D plots: data/MC efficiency ratio

- nJets vs H_T data/MC efficiency ratio
- Left: trigger efficiency; right: corresponding errors
- Not very different from postvious results
- Somehow bigger errors and a bit more spiky (lower data stats?)

Trigger studies in 2018

Trigger studies + datacard

F. lemmi

Introduction

UL2016_pre-VFP

UL2016_postV

2018

Conclusions

ttbar resonance

- 2018 simulation has the following multijet triggers available:
 - HLT_PFHT400_SixPFJet32_DoublePFBTagDeepCSV_2p94
 - HLT_PFHT450_SixPFJet36_PFBTagDeepCSV_1p59
- In 2018 data, two different sets of triggers run, depending on era:
 - 2018 A:
 - HLT_PFHT380_SixPFJet32_DoublePFBTagDeepCSV_2p2
 - HLT_PFHT430_SixPFJet40_PFBTagDeepCSV_1p5
 - 2018 B, C and D:
 - HLT_PFHT400_SixPFJet32_DoublePFBTagDeepCSV_2p94
 - HLT_PFHT450_SixPFJet36_PFBTagDeepCSV_1p59

• Problem: trigger that run in 2018 A are not emulated in MC

Trigger studies in 2018

Trigger studies + datacard

F. lemmi

Introduction

UL2016_pre-VFP

UL2016_postV

2018

Conclusions

- Not 100% about how to proceed
- An idea (maybe?):
 - When running on MC, ask for the triggers available
 - When running on data, ask for triggers available in different eras
 - When adding together TEfficiency objects for data, reweight each era for it's integrated luminosity
 - Extract trigger SF
 - This should take into account the differences in trigger in 2018 A

Summary and next step

- 2016 results look similar to what we saw in pre-UL
- Plots a bit more spiky and having bigger uncertainties
 - Most likely due to splitting of data samples

• Plans:

- 2017 is ready: submit jobs and repeat study there
- Is 2017 downloaded? Plan to make studies there asap

Trigger studies + datacard

F. lemmi

Introduction

UL2016_pre-VFP

UL2016_postV

2018

Conclusions

F. lemmi

Introduction

UL2016_pre-VFP

UL2016_postV

2018

Conclusions

ttbar resonance

ttbarRes

autoMCStats 10 1

- File Edit Options Buffers Tools Help imax 6 number of hins imax * number of processes minus 1 kmax * number of nuisance parameters shapes * * TemplateShapes, root \$PROCESS\$CHANNEL \$PROCESS\$CHANNEL \$SYSTEMATIC observation RSG1000 OCD TThar RSG1000 OCD TThar RSG1888 OCD TThar RSG1000 OCD TThar RSG1000 0CD TThar RSG1888 OCD TTha rate
- Meg provided me with the first nominal templates for ttbar resonance analysis
- I wrote the very first, very preliminary datacard

Trigger studies + datacard

E lemmi

UL2016_pre-

23 / 25

Some checks

- 2 combine -M FitDiagnostics datacard.txt -t -1 -expectSignal 0
 Fitted value is r = 0, as expected
- ③ Putting sum of MC bkg in data_obs and extracting upper limit with combine -M AsymptoticLimits datacard.txt gives same expected and observed limit
 - Good, as the expected limit is computed under the bkg-only hypothesis
 - ${\scriptstyle \bullet }$ Expected, stat only limit: r < 0.0610
- ④ Adding MC stat uncertainties: r < 0.2363

Trigger studies + datacard

F. lemmi

Introduction

UL2016_pre-VFP

UL2016_postV

2018

Conclusions