Systematic Uncertainty Study Part1 Tau of TTTT

Fabio lemmi¹ Huiling Hua¹ Hongbo Liao¹ Hideki Okawa² Yu Zhang²

¹IHEP

²Fudan University

IHEP Group Meeting, 2022

Outline

Systematic uncertainty

2 1tau0l

Outline

Systematic uncertainty

2 1tau0l

List of systematic uncertainties for TTTT

Uncertainty source	Type
Luminosity	Norm
Cross section uncertainties	Norm
QCD (1tau0l) fake rate	Shape
Pileup	Shape
Level-1 ECAL prefiring	Shape
Trigger efficiency	Shape
Identification and isolation efficiency for e and mu	Shape
Identification efficiency for $ au$	Shape
Energy scale of $ au$	Shape
Jet Identification	Shape
Jet energy scale	Shape
b-tag efficiency and mistag rate	Shape
Emiss resolution and response	Shape

Table: Systematic uncertainties

Luminosity

- https:
 //twiki.cern.ch/twiki/bin/view/CMS/TWikiLUM
- uncorrelated effects and correlated effects?

	2016	2017	2018	2016-2018
Recommended luminosity [1/fb]	36.33	41.48	59.83	137.65
Recommended uncertainty	1.2	2.3	2.5	1.6

Prefiring reweighting

- taken into account only in 2016 and 2017 data-taking eras
- uncorrelated
- Shape uncertainty
- produce 2 additional templates filling the prefiring_up and prefiring_do while all the other weights are norminal value

Pileup systematic uncertainty

- The PU present in the Monte Carlo samples does not exactly match the PU present in the data.
- difference is corrected by reweighting simulated events to match the PU distribution in data
- reweight the all MC by pileupWeight_up and pileupWeight_down, rerun the whole analysis, get the distribution

Muon efficiency uncertainty

- uncertainties provided by Muon POG https: //twiki.cern.ch/twiki/bin/view/CMS/MuonUL2016
- mounSF = trackSF* IDSF* IsoSF
- tracks efficiency uncertainty, ID efficiency uncertainty and ISO efficiency uncertainty
 - both systematic and statictic error
- ISO efficiency SF
 - Muon_miniPFRellso_all in nano for minilSo
 - The isolation efficiency are computed with TnP on DY events and might not be representative of high jets multiplicity environment, or boosted muons topology.
 - It seems MinoISO SF and uncertainty not provided by muon POG? yes
 - ► Have to produce SF ourselves https://cms-talk.web.cern. ch/t/re-muon-id-systematics-error/11241/2
- Tracker SF
 - SF are computed on Z->mumu events in the range 40 < pT < 60 GeV. The recommendation is to apply them for muons with pT in

8/19

Electron efficiency uncertainty

- https://twiki.cern.ch/twiki/bin/view/CMS/ EgammaUL2016To2018
- energy scale and smearing
 - nanoaod: Residual energy scale and resolution corrections are applied to the stored electrons
 - energy scales of electrons and muons are known with an uncertainty of less than 1%, neglect
- ID efficiency uncertainty
 - from SF and uncertainties from POG

Tau uncertainty

- https://twiki.cern.ch/twiki/bin/viewauth/CMS/ TauIDRecommendationForRun2
- efficiency to discriminate against jets (a.k.a. tau identification efficiency)
 - ▶ it seems we need to apply genMatch before apply SFs, why
- efficiency to discriminate against electrons
- efficiency to discriminate against muons
- energy scale of genuine taus
- energy scale of genuine electron misidentified as taus.
- no need for muon to tau energy scale correction.
 - uncertainty of muon to tau energy scale is 1% uncorrelated in DM
- uncorrelated accross years

CorrectionlibTool for SF

- https://gitlab.cern.ch/cms-tau-pog/ jsonpog-integration/-/tree/master
- https://gitlab.cern.ch/cms-nanoAOD/ jsonpog-integration/-/tree/master/examples
- For UL analyses the usage of json files + correctionlibTool developped together with the XPOG is recommended for ES, SFs and trigger SFs
- Have implemented the CorrectionlibTool in my code and used the official json files for the SF and correction

Jet JES

- JEC
 - The jet corrections are a set of tools that allows the proper mapping of the measured jet energy deposition to the particle-level jet energy
 - to data and MC
 - JEC applied in NanoAOD
 - minimum correction recommended by JME
 - data: L1L2L3 MCtruth corrections + L2L3Residuals
 - MC: L1 + L2L3 MC-truth
- JEC uncertainty
 - https:

```
//twiki.cern.ch/twiki/bin/view/CMS/JECDataMC
```

- Comes not in the form of event weight, but shifting the jet pt
- for both data and MC
- Shifting the jet pt according to uncertainty and then rerun the analysis
- https://gitlab.cern.ch/cms-nanoAOD/jsonpog-integration/-/tree/master/POG/JME
- uncertainty correlation analysis:

Jet JER

JER

- jet energy resolution (JER) in data is worse than in the simulation and the jets in MC need to be smeared to describe the data
- Jets of MC samples are not smeared, smeared in our code
- With the scaling method, corrected fourmomentum of a reconstructed jet is rescaled with a factor
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/ WorkBookJetEnergyResolution
- https://twiki.cern.ch/twiki/bin/view/CMS/JetResolution

Jet ID efficiency

- https:
 //twiki.cern.ch/twiki/bin/view/CMS/JetID13TeVUL
- No SF required so no uncertainty to consider

B tag

 A bit complicated, might need different stratedy for BDT and HT channels

Outline

Systematic uncertainty

2 1tau0l

Two Uncertainty types

- Efficiency SF uncertainty
 - Comes in the form of event weight, easy to implement
- Energy scale uncertainty
 - need to scale up and down the energy scale and redo the whole analysis(from object selection to event selection)
 - JEC and Tau engergy scale

Adding lumilosity uncertainty

- lumi_13TeV lnN 1.012 1.012 1.012 1.012 1.012 -
- before: expected signficance 0.0719726; limit 27.3750
- after: expected significance 0.0672532; limit 29.3750
- Considering systematic uncertainties makes results worse as expected

Backup

back up

