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* (Gas mixture study
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* Prototype experiment at IHEP
* Beam test data analysis
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* Particle ID with a drift chamber is a key feature for m—
the 4t conceptual detector ‘L ‘
* lonization measurement using the cluster counting | ——

technique (dN/dx) can benefit from small fluctuations —t S

* Need detailed simulation for the feasibility and MC truth
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The simulation workflow

Waveform
Analysis: _

Signal Generator: Electronics:

Full
sim.

induced current waveform g
generation (Garfield++)

impulse response
+ noises

cluster counting
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PID Toolkit
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Likelihood

Fast PID Information from Sampling
sim. dN/dx TOF

A framework of dN/dx simulation is ready



Full ssimulation

Current [{C/ns]

Induced current Realistic waveform
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Signal generator (Garfield++): Electronics: Peak finding algorithm:
* Heed: ionization process * Preamplifier * Low pass filter (smoothing)
* Magboltz: gas properties « Noises * Second derivative (peak detection)
(drift/diffusion) * ADC
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* Requirement: fast and efficient
* Fast: Data size of waveform is huge. Fast online algorithm at the front-end is recommended
* Efficient: Good ability to recover pile-up. High pulse detection efficiency

* Peak finding using derivatives
* Insensitive to the baseline
* Good ability for pile-up recovery
* Fast
* Easy to implement in hardware



* Low pass filter (smoothing)
* Filter out high frequency noises in the waveforms in order to improve the S/N ratio
* Finite impulse response (FIR) filter: FIR[I] = a0*x[n] + al*x[n-1] + -

* Derivative (peak detection)

* First derivative
* First derivative (D1): D1[i] = FIR[i] = FIR[i = G]
* Positive D1: D1' = H(D1) » D1 (H is heaviside function) (Falling-edge cancelling)

* Second derivative and detection: recover pile-up peaks on the rising edge
* Second derivative (D2): D2[i] = D1Ti] = D1 i = G]
* Integration on the positive D2: INT(D2)
* Hit detection: Passing a threshold




Smoothing

— FIR
Frequence Response —— MA2
— MASB
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* Moving average: Poor frequency response
_—— « Optimal filter with Remez exchange algorithm
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Derivative

* Use second derivative instead of first derivative (rising-edge pile-ups recovery)
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Pile-up on the falling edge is easier to recover.
However, it is not the case for pile-up on the
rising edge.




Noise definition

* Noise amplitude related to single-pulse amplitude

. ‘g ONoi
* Noise level definition: A,ﬂ | | _ _ |
signal Fit to single-pulse amplitudes with a Polya function
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More reasonable noise definition. Noise level is only dependent on

the single-pulse amplitudes
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K/pl separation power with the updated algorithm

He 90% + iC,H;, 10%, DC size = 1m
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Better separation power for the updated algorithm with tuned parameters
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Ncl (/cm)

Drift distance =1 cm
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He80: Larger cluster density (more statistics, more pile-ups)
He90: Larger longitudinal diffusion (more pollution from the secondaries)




dN/dx from MC truth

He 90% + iC,H,o 10% He 80% + iC,H,, 20%
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He 90% + 1C,H;5 10% mixture has better K/pi separation for high momentum
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K/pl separation power for gas mixtures

Separation Power (o)

He 90% + iC,H;y 10%, DC size = 1m
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He 80% + iC,H,, 20% has better K/pi separation for low
momentum, but worse for high momentum
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Prototype test with different gas mixtures

* Test primary ionization signals with different gas ratios
e He/iC,Hy = 90/10
* He/iC,H,, = 80/20
e He/iC,H,, = 70/30
* High He ratio (@ the same HV) means high gas gain and high
SNR, which is good for cluster counting

Prototype test @ IHEP

Proportional tube (¢=32mm) Preamplifier

* Low He ratio requires preamplifiers with high gain bandwidth
product (GBP)

e/iC,H,o = 90/10 (1) L He/iCHyp= 90/10 (2)
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Beam test data analysis

Preliminary peak finding with our algorithm Beam test @ CERN from F. Grancagnolo’s group

schematic
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The test was performed during November 2021 at CERN on
the H8 beam line in a parasitic mode. Main users on the same
beam line was a team testing a tile calorimeter and,
therefore, requesting for large part of the time, beams of
electrons and hadrons, at various energies, needed for their
5 calibration, but useless for our purposes. Only sporadically, a
0.08 Eais 108 beam of 165 GeV/c muons was available for us.
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Ongoing activities:
* Binary file converter
* Qutlier removal

* Event classification
muons_165GeV_angle0_GSPS1p2_delay725ns_7Nov_0321 * Tuning peak finding algorithm
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* Simulation is updated in several aspects
* Peak finding algorithm with tuned parameters
* Noise definition

* Results with He 80% + iC,H;, 20% gas mixture gives better K/pi separation at low momentum, but
worse K/pi separation at high momentum

* Experiment status

* Prototype experiment with different gas mixtures
* High gain and good SNR for high He ratio
* Need preamplifier with high GBP for low He ratio

* Data analysis with the beam test data is ongoing



Backup



More study of gas mixtures

* choice of the gas mixture is essential
* High cluster density compatibly with cluster

* Simulation of gas mixture performed to understand
the gas property and optimize the working point
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counting efficiency

* Low drift velocity helps to identify clusters in time
* Small longitudinal diffusion is beneficial to both
spatial resolution and dN/dx measurement

Drift time vs drift distance
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Arrival time spread (ns)

Diffusion effect vs drift distance
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