# W mass at future e<sup>+</sup>e<sup>-</sup> colliders

Eur. Phys. J. C (2020) 80:66 Eur. Phys. J. Plus (2021) 136:1203 JINST **16** P07037

1

### Gang Li, Zhijun Liang, Manqi Ruan

W Mass Workshop IHEP, THU, NJNU & PKU

April 14th, 2022

# Outline

- > Introduction
- Measurement methods
- Direct measurement
- Threshold scan
- Summary & discussion

### Introduction

- After the discovery of Higgs boson, the new physics could be probed via
  - Direct searches:
    - Based on a theory hypothesis, looking for excesses in the mass spectrum.
    - e.g. Heavy Di-boson resonance searches
  - Indirect searches, indirect constraints:
    - Precisely measure SM properties, compare with SM predictions, check the consistency
    - The differences can come for contributions from new particles
    - E.g. W boson mass measurements



April 14th, 2022

## Introduction

EW precisions play important role to test the consistency of the SM via global fit.

 $\succ$  e.g. Given M<sub>z</sub>,  $\alpha$ , and G<sub>F</sub>, the W mass is predictable



 $\succ$  Various ways to measure  $m_W$  ...



April 14th, 2022

### Measurement method – I

Direct reconstruction

### ≻ Pros

- Large statistics
- Kinematics fits (ee collision)

### > Cons

- Jet energy resolution and calibration
- Fragmentation models
- ➢ PDFs in pp collision
- ➤ Color reconnection
- ➢ Final combination of LEP
  - Stat. 25 MeV
  - Syst. 22 MeV



#### April 14th, 2022

### Measurement method – II



Lepton spectrum

➢ Pros

Large statisticsKinematics fits

> Cons

Momentum calibrationPDFs in pp collision



## Measurement method – III

- Threshold scan around 160 GeV
  - Comparing the measured cross section with theoretical calculation and extracting the W mass and width
- Simple counting experiment
- Less systematics w.r.t direct method
- Challenge: beam energy calibration

### ≻ LEP

- Stat. 200 MeV
- ➤ Syst. 30 MeV



### History of the W mass measurements



# Future e<sup>+</sup>e<sup>-</sup> colliders

### CEPC & FCC-ee

- Two circular e+e- collider were proposed after the discovery of Higgs boson
- Similar design philosophy and similar performances
- Similar physics programs
- ✓ Higgs, EW, QCD, and flavor physics and the new physis
   BSM
- ✓ Active R&D activities
- ✓ Released the CDRs in 2018 and 2019, respectively
- ✓ FCC-ee is the first prior of the European Strategy of Particle Physics and received strong support



# Physics programs of CEPC & FCC-ee

| Operation<br>scenarios | CEPC                              |                                 | FCC-ee                            |                                 |  |
|------------------------|-----------------------------------|---------------------------------|-----------------------------------|---------------------------------|--|
|                        | Luminosity<br>(ab <sup>-1</sup> ) | # of evts<br>(10 <sup>6</sup> ) | Luminosity<br>(ab <sup>-1</sup> ) | # of evts<br>(10 <sup>6</sup> ) |  |
| Z                      | 100                               | <b>3x10</b> <sup>6</sup>        | 192                               | 6x10 <sup>6</sup>               |  |
| WW                     | 6                                 | 100                             | 6-12                              | 100-200                         |  |
| Higgs                  | 20                                | 4                               | 5.1                               | 1                               |  |
| Тор                    | 1                                 | 0.5                             | 1.7                               | 0.85                            |  |

### Slightly different, not fixed yet

### Direct reconstruction

- CEPC expected to accumulate 20 iab integrated luminosity at 240 GeV. On top of 4 Million Higgs, it will generate 60 M lvqq events
- evqq slightly more than muvqq with the contribution from single W process. The W boson mass can be reconstructed with
  - Relative Mass resolution of 4%
  - Jet energy scale: ~1% before angular/energy correction, 0.1% after correction.



### Reconstruct W mass from lvqq events at 240 GeV

- Meanwhile, we are anticipating ~1 billion ee→qq events at 240 GeV to be used for jet energy calibration.
- Thus, we expect 2 3 MeV uncertainty on W mass using two lvqq processes at 240 GeV.
- Dominated by systematics
- Reference:
  - From JINST 16 P07037: < 10 MeV with only muvqq of 5 iab integrated luminosity



#### W mass from lvqq events at 240 GeV

### W threshold scan





### Signals (CC03)

10 diagrams in total



April 14th, 2022

Why scan the threshold? A simple counting experiment Line shape depends on the W mass/width

$$\sigma_{WW}(m_W, \Gamma_W, \sqrt{s}) = \frac{N_{obs}}{L\epsilon P} \qquad (P = \frac{N_{WW}}{N_{WW} + N_{bkg}})$$

 $m_W$ ,  $\Gamma_W$  can be extracted by comparing the  $\sigma_{WW}$  with the prediction



Most of them depend on  $\sqrt{s}$ , so it is an optimization problem:

Which energy points should be chosen and allocation of luminosity

April 14th, 2022

## **Theoretical Tool**

- > The  $\sigma_{WW}$  is a function of  $\sqrt{s}$ ,  $m_W$  and  $\Gamma_W$ , calculated with the GENTLE (CC03)
- The ISR correction considered by convoluting the Born cross sections with QED structure function, with the precision up to NLO(α<sup>2</sup>) and O(β<sup>3</sup>)

( implemented by ourselves )

> All expected to improved in future



# Statistical and systematic uncertainties

### Statistical uncertainties with a single energy point

$$\begin{split} & \triangleright \Delta \sigma_{WW} = \sqrt{\frac{\sigma_{WW}}{L\epsilon P}} \qquad (P = \frac{N_{WW}}{N_{WW} + N_{bkg}} \\ & \triangleright \Delta m_W = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \sqrt{\frac{\sigma_{WW}}{L\epsilon P}} \\ & \triangleright \Delta \Gamma_W = \left(\frac{\partial \sigma_{WW}}{\partial \Gamma_W}\right)^{-1} \times \sqrt{\frac{\sigma_{WW}}{L\epsilon P}} \\ & \text{Asumming } L = 3.2 \ ab^{-1}, \text{ and } \epsilon = 0.8, P = 0.9 \\ & \bullet \ \Delta m_W = 0.6 \ \text{MeV}, \ \Delta \Gamma_W = 1.4 \ \text{MeV} \\ & \text{(at the most sensitive energy points)} \end{split}$$



April 14th, 2022

# Statistical uncertainty

> If more points, we can measure both  $m_W$  and  $\Gamma_W$ . > The  $\chi^2$  defined as:

$$\chi^2 = \sum_{i} \frac{(N_{\text{fit}^i} - N_{\text{obs}}^i)^2}{N_{\text{obs}}^i} = \frac{(\mathcal{L}\epsilon P)^i (\sigma_{\text{fit}}^i - \sigma_{\text{obs}}^i)^2}{\sigma_{\text{obs}}^i}$$

and the covariance matrix

$$V = \frac{1}{2} \times \begin{pmatrix} \frac{\partial^2 \chi^2}{\partial m_W^2} & \frac{\partial^2 \chi^2}{\partial m_W \partial \Gamma_W} \\ \frac{\partial^2 \chi^2}{\partial m_W \partial \Gamma_W} & \frac{\partial^2 \chi^2}{\partial m_W^2} \end{pmatrix}^{-1} = \sum_i \begin{pmatrix} \frac{(\pounds \epsilon P)^i}{\sigma_{obs}^i} (\frac{\partial \sigma}{\partial m_W})^2 & \frac{(\pounds \epsilon P)^i}{\sigma_{obs}^i} \frac{\partial \sigma}{\partial m_W} \frac{\partial \sigma}{\partial \Gamma_W} \\ \frac{(\pounds \epsilon P)^i}{\sigma_{obs}^i} \frac{\partial \sigma}{\partial m_W} \frac{\partial \sigma}{\partial \Gamma_W} & \frac{(\pounds \epsilon P)^i}{\sigma_{obs}^i} (\frac{\partial \sigma}{\partial m_W})^2 \end{pmatrix}^{-1}$$

>When the number of parameters reduce to 1:

$$\Delta m_W = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \Delta \sigma_{WW} = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \sqrt{\frac{\sigma_{WW}}{L\epsilon P}}$$

April 14th, 2022

Statistical uncertainties vs  $\int \mathcal{L}$ 



Systematics matter in this case, let's check ...

April 14th, 2022

### Systematic uncertainty



April 14th, 2022

# Energy calibration

 $\succ$  With  $\Delta E$ , the total energy becomes:

$$E = G(E_p, \Delta E) + G(E_m, \Delta E)$$
(two beams)

$$\succ \Delta m_W = \frac{\partial m_W}{\partial \sigma_{WW}} \frac{\partial \sigma_{WW}}{\partial E} \Delta E$$

- > The  $\Delta m_W$  proportional to  $\Delta E$ ,
- > Almost independent on  $\sqrt{s}$ .



### Energy spread and the W width

### **Two special Energy points**

≻With  $E_{BS}$ , the  $\sigma_{WW}$  becomes:

 $\sigma_{WW}(E) = \int_0^\infty \sigma_{WW}(E') \times G(E, E') dE'$ 

$$= \int \sigma(E') \times \frac{1}{\sqrt{2\pi}\delta_E} e^{\frac{-(E-E')^2}{2\sigma_E^2}} dE'$$

The m<sub>W</sub> insensitive to δ<sub>E</sub> at around 162.3 GeV
 Similar for the W width at ~ 162.5 GeV



April 14th, 2022

# Backgrounds

The effect of background are in two different ways

1. Stat. part: $\Delta m_W(N_B) = \frac{\partial m_W}{\partial \sigma_{WW}} \cdot \frac{\sqrt{L\epsilon_B \sigma_B}}{L\epsilon}$ 2. Syst. part: $\Delta m_W(\sigma_B) = \frac{\partial m_W}{\partial \sigma_{WW}} \cdot \frac{L\epsilon_B \sigma_B}{L\epsilon} \cdot \Delta \sigma_B$ With L=3.2ab<sup>-1</sup>,  $\epsilon_B \sigma_B = 0.3$  pb,  $\Delta \sigma_B = 10^{-3}$ : $\Delta m_W(N_B) \sim 0.2$  MeV,  $\epsilon \cdot P$  and  $\sigma_B$  are combined.

Improving MC and event selection could reduce it

The S/B ratios at different energies are taken into account in the study

April 14th, 2022

# Correlated sys. uncertainty

> The correlated sys. uncertainty includes:  $\Delta L$ ,  $\Delta \epsilon$ ,  $\Delta \sigma_{WW}$ ...

- > Since  $N_{obs} = L \cdot \sigma \cdot \epsilon$ , these uncertainties affect  $\sigma_{WW}$  in the same way.
- > We use the total correlated sys. uncertainty in the optimization:

$$\delta_c = \sqrt{\Delta L^2 + \Delta \epsilon^2}$$

$$\Delta m_W = \frac{\partial m_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c , \ \Delta \Gamma_W = \frac{\partial \Gamma_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c$$

# Correlated sys. uncertainty

To consider the correlation, the scale factor method is used,

$$\chi^{2} = \sum_{i}^{n} \frac{(y_{i} - h \cdot x_{i})^{2}}{\delta_{i}^{2}} + \frac{(h-1)^{2}}{\delta_{c}^{2}},$$

where  $y_i$ ,  $x_i$  are the true and fit results, h is a free parameter,  $\delta_i$  and  $\delta_c$  are the independent and correlated uncertainties.

For the Gaussian consideration, the scale factor can reduce the effect.

For the non-Gaussian case, the bias of the  $m_W$  is negligible



# Optimization of the experiment



# One single point (only $m_W$ measured)

There are two special energy points :

> The one most statistical sensitivity to  $m_W$ :

 $\Delta m_W$ (stat.) ~0.59 MeV at E = 161.2 GeV

(  $\Delta \Gamma_W$  and  $\Delta E_{BS}$  significant)

> The one  $\Delta m_W$ (stat)~0.65 MeV at  $E \approx 162.3$  GeV

( $\Delta \Gamma_W, \Delta E_{BS}$  negligible)

Assuming  $\Delta L (\Delta \epsilon) < 10^{-4}, \Delta \sigma_B < 10^{-3}, \Delta E = 0.7 \text{MeV},$  $\Delta \sigma_E = 0.1, \Delta \Gamma_W = 42 \text{MeV})$ 

|  | $\sqrt{s}$ (GeV)   | 161.2 | 162.3 |
|--|--------------------|-------|-------|
|  | Ε                  | 0.36  | 0.37  |
|  | $\sigma_E$         | 0.20  | -     |
|  | $\sigma_B$         | 0.17  | 0.17  |
|  | $\delta_c$         | 0.24  | 0.34  |
|  | $\Gamma_{W}$       | 7.49  | -     |
|  | Stat.              | 0.59  | 0.65  |
|  | $\Delta m_W$ (MeV) | 7.53  | 0.84  |

# Two energy points

To measure  $\Delta m_W$  and  $\Delta \Gamma_W$ , optimize the energies and the luminosity fractions:

1.  $E_1, E_2 \in [155, 165]$  GeV,  $\Delta E = 0.1$  GeV

2.  $F \equiv \left(\frac{L_1}{L_2}\right) \in (0, 1), \ \Delta F = 0.05$ 

> Define the objective function:  $T = m_W + 0.1\Gamma_W$  to optimize the parameters (assuming  $m_W$  is more important than  $\Gamma_W$ ).

# Two energy points



April 14th, 2022

# Taking data at three or more energy points

Similar optimization procedure



- Study shows the above energy points are optimal
- Certainly, more points, more robust
- From point of view of experiment, extra point(s) below threshold is necessary for background study, etc

April 14th, 2022

# Summary of uncertainties

| Data-taking scheme | mass or width    | $\delta_{\text{stat}}$ (MeV) | $\delta_{\rm sys}$ (MeV) |                   |            | Total (MeV) |      |
|--------------------|------------------|------------------------------|--------------------------|-------------------|------------|-------------|------|
| C                  |                  |                              | $\Delta E$               | $\Delta \sigma_E$ | $\delta_B$ | $\delta_c$  |      |
| One point          | $\Delta m_W$     | 0.65                         | 0.37                     | _                 | 0.17       | 0.34        | 0.84 |
| Two points         | $\Delta m_W$     | 0.80                         | 0.38                     | _                 | 0.21       | 0.33        | 0.97 |
|                    | $\Delta\Gamma_W$ | 2.92                         | 0.54                     | 0.56              | 1.38       | 0.20        | 3.32 |
| Three points       | $\Delta m_W$     | 0.81                         | 0.30                     | _                 | 0.23       | 0.29        | 0.98 |
|                    | $\Delta\Gamma_W$ | 2.93                         | 0.52                     | 0.55              | 1.38       | 0.20        | 3.37 |

### Theoretical uncertainties

- W-pair production cross section
- + High order corrections
- Initial Radiative Correction (ISR)

• ...

Borrowed from Christian Schwinn's slides

April 14th, 2022

# W-pair production

NLO calculations in Double Pole Approximation

- Implemented in Monte-Carlo programs for LEPII:
  - Berends et al. 98;
  - Denner et al. 99
  - RacoonWW (Denner et al. 99),
  - YFSWW (Jadach et al. 99)

Theory developments after LEP2:

- Complete NLO calculation for charged current  $e+e- \rightarrow 4f$
- Log-enhanced NNLO corrections for hat(s)  $\gg M_W$
- NLO and leading NNLO correction in threshold expansion



(Denner et al. 05)

(Kuhn et al. 07)

(Beneke et al. 07, Actis et al. 08)

April 14th, 2022

# W-pair production

Full NLO calculation for  $e+e- \rightarrow 4f$  (Denner, Dittmaier, Roth, Wieders 05)





Sizable correction

April 14th, 2022

# Beyond NLO at threshold

**Enhanced corrections** in threshold limit  $\beta = \sqrt{1 - \frac{4M_W^2}{s}} \rightarrow 0$ :

soft threshold logarithms  $\sim (\alpha \log^2 \beta)^n$ , Coulomb correction  $\sim (\alpha/\beta)^n$ 

#### **EFT** approach:

(Beneke/Falgari/CS/Signer/Zanderighi 07)

expansion in  $\alpha \sim \frac{\Gamma_W}{M_W} \sim \frac{k_W^2 - M_W^2}{M_W^2}$ 

#### Leading NNLO corrections

- 2nd Coulomb correction  $\sim \alpha^2/\beta^2 \sim \alpha$  (Fadin et al. 95)
- Coulomb-enhanced corrections  $\sim \alpha^2/\beta \sim \alpha^{3/2}$  (Actis et al. 08)

|                       | $\sigma(e^-e^+  ightarrow \mu^- ar{ u}_\mu u ar{d}) (fb)$ |                            |                                   |                                 |
|-----------------------|-----------------------------------------------------------|----------------------------|-----------------------------------|---------------------------------|
| $\sqrt{s}[{\sf GeV}]$ | NLO <sub>EFT</sub>                                        | NLO <sub>ee4f</sub> [DDRW] | $\Delta_{NNLO}(\alpha^2/\beta^2)$ | $\Delta_{NNLO}(\alpha^2/\beta)$ |
| 161                   | 117.38(4)                                                 | 118.77                     | 0.44                              | 0.15                            |
| 170                   | 399.9(2)                                                  | 404.5(2)                   | 0.2                               | 1.6                             |

non-resonant NLO corrections

included in NLO<sub>ee4f</sub> but not in NLO<sub>EFT</sub>:  $\Delta \sigma_{WW} \sim 1\%$ 

• leading NNLO corrections:  $\Delta \sigma_{WW} \sim \mathcal{O}(\%) \Rightarrow [\delta M_W]_{C2} < 4 \text{ MeV}$ April 14th, 2022 W Mass Workshop

36

### ISR

### Important issue at electron positron colliders

**ISR:** resum leading logs

$$eta_e = rac{2lpha}{\pi} \left( 2\log\left(rac{2M_W}{m_e}
ight) - 1 
ight)$$

in electron structure functions:

(Skrzypek 92)

$$\sigma_{\mathsf{NLO}}(s) = \int_0^1 dx_1 \int_0^1 dx_2 \Gamma_{ee}^{\mathsf{LL}}(x_1) \Gamma_{ee}^{\mathsf{LL}}(x_2) \Big( \sigma_{\mathsf{tree}} + \Delta \hat{\sigma}_{\mathsf{NLO}} \Big)$$

Estimate missing NLL  $O(\alpha\beta_e)$ : ISR for tree only  $\Leftrightarrow$  also for NLO Uncertainty ~ 2% at threshold

- $\Rightarrow [\delta M_W]_{\mathsf{ISR}} \approx 30 \,\mathsf{MeV}$
- $\Rightarrow$  NLL resummation important



April 14th, 2022

# Summary

- >  $m_W$  ( $\Gamma_W$ ) could be measured with great precisions by threshold scan and direct reconstruction
- With most systematics taken into account except the theoretical ones, 1 MeV and 3 MeV uncertainties for W mass and width could be achieved, respectively.
- > Challenges for theorists :  $\sigma_{ww}$  of ~O(0.01)%
  - > NNLO EW corrections to  $e+e- \rightarrow 4f$ : needs new approaches
  - > ISR uncertainty: needs NLL treatment
- > Challenges for experimentalists
  - > Beam energy calibration, Duan Zhe and Yongsheng will continue the story ...

> ...

April 14th, 2022

# Very, very optimistic perspective

Defend or kill the SM? It's a problem.



April 14th, 2022

W Mass Workshop

## Correlated sys. uncertainty

$$\Delta m_W = \frac{\partial m_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c$$

Two ways to consider to effect:

(a) Gaussian distribution  $\sigma_{WW} = G(\sigma_{WW}^0, \delta_c \cdot \sigma_{WW}^0)$ 

(b) Non-Gaussian (will cause shift)  $\sigma_{WW} = \sigma_{WW}^0 \times (1 + \delta_c)$ 

With  $\delta_c = +1.4 \cdot 10^{-4} (10^{-3})$  at 161.2GeV  $\Delta m_W \sim 0.24$  MeV (3MeV)



April 14th, 2022

W Mass Workshop