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Measurement of the  boson massW
•  is related to other fundamental parameters in SM EW sector 


        


• Radiative corrections ( ) dominated by top quark and Higgs loop, also can 
be affected by new physics contributions 


• The LHCb measurement is complementary to the ATLAS and CMS results 


PDFs uncertainty could partially cancel in the combination of LHC 
measurements
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LHCb W mass measurement
• ATLAS and CMS experiments have the high pileup environment


•  sample with high purity can be selected using the LHCb data, without 
requirement on the missing 


• Anti-correlation of PDFs uncertainty: 10.5 MeV to 7.7 MeV

W → μν
Et
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Estimated PDFs uncertainties

G: General purpose detector


L: LHCb

: charge of  boson± W

Correlation matrix Weights

Statistical uncertainty with LHCb Run-2 data-set would be better than 10 MeV



LHCb detector
• Designed for the heavy flavour physics, with 


• Extended to EW measurements: excellent performance of tracking and muon detector  

2 < η < 5
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Analysis strategy
• Leptonic decay of W boson, 


• Limited detector coverage: cannot get MET information, same 
for 


• Muon  distribution is used to measure 


• Detector response 


• Muon momentum measurement


• Muon reconstruction and selection efficiency 


• Backgrounds


• EW boson production


•   modelling, PDFs, boson polarisation, electroweak 
corrections

W → μν
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Simultaneously fitting the  and  data: Z boson W Z ϕ*



Datasets

As a pathfinder measurement, only use 2016 data-set


PYTHIA is used with full simulation: missing higher effects, reweightings are needed 
6
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Event selection 
• Identified muon candidate matched to single muon trigger (threshold 20 GeV)


• Relative momentum uncertainty: 


• : difference in the vertex fit  of the PV, with and without the muon


• Hadronic backgrounds are suppressed to the precent level by an isolation requirement 


•
 GeV in cone size of 0.4


• Second muon veto: to suppress  background by a factor of 2


• In the region  GeV, and 


• Roughly 2.4 million events

δp/p < 6 %

χ2
IP < 9 χ2

∑
i

pT(i) < 4

Z → μμ

28 < pT < 52 2.2 < η < 4.4
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Charge dependent curvature biases 
• Real-time detector alignment/calibration in the LHCb Run-2


• However, the alignment is optimized for the heavy flavour physics


• Use , ,  events 


• Does not work well for  events


• Detector level alignment and a custom alignment 


• Corrections developed using pseudo-mass (for + and - charged 
muons):
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Charge dependent curvature biases 

• An example of curvature corrections

9

JHEP 01 (2022) 036



Momentum smearing fit

• Simultaneous fit of  mass distribution: 


• Simulation to describe data

J/ψ, Υ(1S), Z χ2/dof = 1862/2082

q
p

→
q

p ⋅ 𝒩(1 + α, σMS)
+ 𝒩 (σ,

σδ

cosh η )
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Efficiency corrections
• Traditional tag-and-probe method:  , events


• The simulated events are corrected with event-by-event weight

Z → μ+μ− Υ(1S) → μ+μ−

11
Tracking efficiency determination Trigger efficiency 
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Muon isolation efficiency 
• The muon isolation cut is used to suppress heavy 

flavour background


• Sizable contributions from pile-up, underlying event 
and the recoil component of the hard process


• Study isolation efficiency as a function of , with 
 events:


                    

u
Z → μμ

u =
⃗p V
T ⋅ ⃗p μ

T

pμ
T
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Background modeling
• Electroweak backgrounds and heavy flavour 

hadrons are modeled with simulation 


• Hadronic background: the decay-in-flight of 
pions and kaons


• Cannot get from simulation 


• Special triggered events without muon ID 
requirement 


• Majority occur outside the magnetic field 
region
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QCD corrections: polarisation
• Born-level form of 


          


• An equivalent expression of  production


•  is particularly important for the muon  distribution 

W → μν

Z → μμ

A3 pT
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QCD Corrections:  boson W pT
• The  of a muon has a strong dependence on the  boson   (extremely important for this analysis) 


•   measurement from ATLAS/CMS/D0: limited by   resolution 


• POWHEG+PYTHIA: tuning of  and 


•  events are used to validate 

pT W pT

W pT pT

αs kintr
T

Z → μμ
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QCD reweighting

: POWHEGPYTHIA 


: DYTURBO 
pT

Ai
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QCD Corrections: Higher  regionpT
• However, in the high boson  region


• Significant difference between data ( ) and POWHEG+PYTHIA prediction 


• Missing matrix elements for the production of a weak boson and more than one jet

pT

Z → μμ
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QCD reweighting

: POWHEGPYTHIA 


: DYTURBO 

High : data/Prediction

pT
Ai
pT

Up to 10% at PTZ ~ 100 GeV


100% of this correction: < 1 MeV uncertainty
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QED corrections
• Effects from final-state radiation (FSR): larger effects on the muon channel 


• Showing algorithms: PHOTOS, HERWIG, PYTHIA
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Electroweak correction
• The higher order EW corrections are not included in the model


• 5 MeV uncertainty is assigned: compare POWHEGBOXV2 
prediction with and without electroweak corrections
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Fit results
• The determined  with the NNPDF31_nlo_as_0118 PDFs set


• 


• Combined results obtained with NNPDF3.1, CT18, and MSHT20 PDFs sets:


•

• Analysis with full data-sets is ongoing 

mW

χ2/dof = 105/102

mW = 80354 ± 23(stat.) ± 10(exp.) ± 17(theory) ± 9(PDF)
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Systematic uncertainties

20

PDFs: Average of NNPDF31, CT18 and MSHT20

 model: Envelope from five different modelspT

: scale variationAi

QED: Envelope of the QED FSR from PYTHIA8, 
 Photos, and Herweig7

Efficiencies: statistical uncertainties, 

details of method (e.g. binning, smoothing)
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LHCb measured result
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Full Run-2 data-sets
• First measurement of  from 

LHCb: 32 MeV


• Consistent with previous 
measurements and with the 
prediction


• A total uncertainty of  MeV


• Upgrade to a double differential 
fit

mW

≤ 20
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mW = 80354 ± 23(stat.) ± 10(exp.) ± 17(theory) ± 9(PDF)

JHEP 01 (2022) 036



Conclusion
• LHCb has an extensive program on  boson production and 

properties 


• Precise measurement of the  boson mass: consistent with SM expectation 


• With detector instrumented in the forward region, the LHCb results 
could provide unique information in the LHC combination 


• Future measurement: systematic uncertainty dominated 
(challenging and exciting)

W/Z

W

23 Stay tuned for new results!



Backup

24



Electroweak Global fit
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 selection in the  mass 
measurement

Z → μμ W

• Two oppositely charged identified muons, associated to the same 
PV


• Invariant mass:  GeV of the known  boson mass


• At least one muon must be triggered by single muon trigger


• Muon  GeV, isolated (isolation  GeV)


•

±14 Z

pT > 20 < 10

IP − significance < 10

28

~190k selected candidates



 and  selectionJ/ψ → μμ Υ(1S) → μμ

• Calibrate the modeling of the momentum measurement


• A pair of oppositely charged identified muons


• Muon  GeV, tight muon identification selection


•  from  hadron decays: displaced from the nearest PV with a 
significance of at least three standard deviations

pT > 3

J/ψ b

29

~ 1.0M 

~ 220k 

Υ(1S) → μμ
J/ψ → μμ



Systematic uncertainty: smearing 
• Statistical uncertainties: 3 MeV


•  mass: 2 MeV


•  mass: negligile 


• Detector material: varied by 10%, 3 MeV


• Smearing modeling method: 5 MeV


• An alternative form of   and variations of 


• Radiative tails of  and : 2 MeV

Υ(1S)

J/ψ

1
cosh η

σMS

J/ψ Υ(1S)
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p ⋅ 𝒩(1 + α, σMS)
+ 𝒩 (σ,

σδ

cosh η )

Total: 7 MeV



Systematic uncertainty: muon efficiency

• Statistical uncertainties in the trigger, tracking and identification 
efficiency corrections


• Binning schemes of efficiencies


• Tag muon requirements, mass window cut


• Probe muon has worse resolution (MuonTT track): smearing

Total: 6 MeV
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Systematic uncertainty: isolation efficiency

• Statistical uncertainty 


• Binning schemes


• A smoothing procedure: enhance the effective statistical precision 
of the correction map

32

Total: 4 MeV



Systematic uncertainty: background

• For the hadronic background


• The data sample is treated as containing a single hadron species 


• 60% of pion, 30% of kaon and 10% of proton


• Inverted muon identification requirements


• Dependence on the range of  values used in the fitspT

33

Total: 2 MeV

(1 +
pT

α )
−n



Systematic uncertainty: EW correction

• Higher order electroweak correction


• Not included in the model


• POWHEGBOXV2: with and without electroweak corrections

Total: 5 MeV
34
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Systematic uncertainty: boson  modelingpT
• Renormalisation and factorisation scales


• Fully correlating the scale variations between angular coefficient numerator and 
denominator: inadequate uncertainty 


• Recommendation: vary four scales independently by factors of 1/2 and 2, with constraint 
that all ratios that constructed from the four scales are between 1/2 and 2


• POWHEG+PYTHIA is used as default input 


• PYTHIA+CT09MCS LO PDFs


• PYTHIA+NNPDF31 LO PDFs


• HERWIG/POWHEG+HERWIG + NNPDF31 NLO PDFs

JHEP 11 (2017) 003

Total: 11 MeV
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Systematic uncertainty: PDFs

• NNPDF31 LO vs. NLO PDFs: 1 MeV


• NNPDF31, CT18, MSHT 20, : fully correlated 


•

αs
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Systematic uncertainty: angular scale factor

• As ATLAS data are reasonably well described by  prediction 
from DYNNLO (DYTURBO)


• In this measurement, use DYTURBO prediction as inputs


• Uncertainty from DYTURBO is  MeV


• Only vary : 10 MeV

O(α2
s )

O(30)

A3
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Systematic uncertainty: high pT

• A data/prediction correction is applied to the simulation 


• Vary the correction 100% : 1 MeV
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Systematic uncertainty: QED

• Final state radiation: PHOTOS, HERWIG, PYTHIA


• Arithmetic average of these predictions 


• 7 MeV
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Cross checks
• Orthogonal splits (5): polarity, charge X polarity, within 2 


• Fit range: variations in the upper/lower limits


• Fit freedom: 3  or 1  


• -like fit of the  mass: consistent with PDG value with uncertainty 


•  fit: check differences between  and 


• Additional test: NNLO PDFs instead of NLO PDFs, smaller than 1 MeV

σ

αs αs

W Z

δmW W+ W−
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W width

• Fixed to the SM value


• However, it could be better use the SM prediction


•
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