

W mass measurements in ATLAS experiment at the LHC

Tairan Xu, Mengran Li, Xuewei Jia, Junjie Zhu, Joao Guimaraes da Costa 2022/04/14

Institute of High Energy Physics Chinese Academy of Sciences

- Introduction
- W-mass measurement using LHC Run-I data
- W mass @ ATLAS Run-II & future prospects

LHC & ATLAS

Proton-proton collider working at \sqrt{s} = 2.76, 5, 7, 8, 13 TeV

W mass

2022/04/14

LHC & ATLAS

2022/04/14

Before the ATLAS Run-I W-mass measurement

sensitivity of the global EW fits to new physics

2022/04/14

W mass @ LHC

W

λ=+1

λ=+1

proton

d

đ

*pileup introduced in later section

Challenging environment @LHC: Pileup* induced high experimental precision requirement Accurate theoretical modelling

- W+/W- production is asymmetric -> charge-dependent analysis
- Second generation quark PDFs play a larger role at the LHC (25% of the Wboson production is induced by at least one second generation quark s or c).
- The W polarization is determined by the difference between the u,d valence and sea densities

- Introduction
- W-mass measurement using LHC Run-I data
- W mass @ ATLAS Run-II & future prospects

First W mass measurement at the LHC

published in EPJC Eur.Phys.J.C (2018) 78:110

CERN Courier January/February 2017

News

ATLAS makes precision measurement of W mass

SWI swissinfo.ch

ASTROPAGE.EU

How to measure W mass?

Template fit approach using m_W templates based on BW function: minimal χ^2 (Likelihood) approach for Run I (Run II)

*A blinding offset was applied throughout the measurement and removed when consistent results were found.

Physics modelling:

The approach of prediction to data is essential in W mass measurements.

Start from the Powheg+Pythia8 and apply corrections. Ancillary measurements of W/Z for validation and systematics.

EW corrections:

- QED FSR / ISR
- Higher order effects/ FSR pair production

QCD corrections:

- Polarization
- Rapidity
- Transverse momentum

Physics modelling:

An approximate decomposition of Drell-Yan is given by factorizing the dynamic of boson production and the kinematic of boson decay:

MC:

- Powheg+Pythia8, CT10NNLO
- Sherpa, NNPDF3.0 + MEPS@NLO

EW:

- Photos + Pythia8
- winhac

- Breit-Wigner parameterization: $\frac{d\sigma}{dm} \propto \frac{m^2}{(m^2 m_V^2)^2 + m^4 \Gamma_V^2 / m_V^2}$
- $d\sigma/dy$: modelled with fixed order pQCD at NNLO, arXiv:1612.03016
- $d\sigma/dp_T$: modelled with parton shower
- A_i , $i = 0 \dots 7$: Angular coefficients, model the polarization state of vector boson, <u>JHEP08(2016)159</u>

Rapidity and Angular coefficients

Modelled with fixed order pQCD at NNLO (CT10nnlo pdf), arXiv:1612.03016

p_{T}^{W} , transverse momentum

Most efforts in modelling p_T^W :

Baseline: Pythia8 AZ tune (fixed by the p_T^Z measure), extrapolated to p_T^W , considering related variations in p_T^W/p_T^Z JHEP09(2014)145

- Resummed NNLL predictions (DYRES, ResBos, CuTe) were tried but mis-modeled at low pT. Phys.Rev.D 50 (1994) R4239, Phys.Rev.D 56 (1997) 5558-5583, JHEP12 (2015)047, JHEP03 (2011) 032, JHEP10 (2012) 155, JHEP05 (2013) 082...
- Using "formally" predicted p_T^W will impact the W-mass precision by 50-100 MeV

 p_T^W validated with the recoil distribution .

Uncertainties in the physics modelling

EW	Decay channel	W -	$\rightarrow ev$	W	$\nu \to \mu \nu$		-		riatior
	Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}			applie	d to ra
	δm_W [MeV]						-	Envelo	pe tak
	FSR (real)	< 0.1	< 0.1	< 0.	1 < 0.	1		MMH	۲ <mark>201</mark> 4 ′
	Pure weak and IFI corrections	3.3	2.5	3.5	2.5				
	FSR (pair production)	3.6	0.8	4.4	0.8				
	Total	4.9	2.6	5.6	2.6				
W-boson charge				W	+	W	7-	Com	bined
Kinematic distribution			p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	
$\delta m_W [{ m MeV}]$									
Fixed-order PDF uncertainty			1	3.1	14.9	12.0	14.2	8.0	8.7
AZ tune				3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass				1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation			on	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty				3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients				5.8	5.3	5.8	5.3	5.8	5.3
Total			1	5.9	18.1	14.8	17.2	11.6	12.9

PDF uncertainties:

ations of CT10nnlo to rapidity, Ai, p_T^W

e taken from CT14 and 014 ~3.8 MeV

QC

Experimental corrections: Electron

Eur.Phys.J.C 74 (2014) 3071

To achieve the highest precision, $1.2 < |\eta| < 1.82$ has been excluded as the amount of passive material In front of the calorimeter with significant systematics.

Electron selection efficiency as function of p_T and η : Eur. Phys.J.C 74 (2014) 2941

Experimental corrections: Electron

Experimental corrections: Muon

Eur.Phys.J.C 74 (2014) 3130

Muon identified using combined inner detector + muon spectrometer.

tracks, momentum measurement from ID only.

Calibration factors for ID-only muons derived from Z—> $\mu\mu$ and sagitta bias charge-dependent corrections

$$p_{\mathrm{T}}^{\mathrm{MC,corr}} = p_{\mathrm{T}}^{\mathrm{MC}} \times \left[1 + \alpha(\eta, \phi)\right] \times \left[1 + \beta_{\mathrm{curv}}(\eta) \cdot G(0, 1) \cdot p_{\mathrm{T}}^{\mathrm{MC}}\right]$$
$$p_{\mathrm{T}}^{\mathrm{data,corr}} = \frac{p_{\mathrm{T}}^{\mathrm{data}}}{1 + q \cdot \delta(\eta, \phi) \cdot p_{\mathrm{T}}^{\mathrm{data}}}$$

Muon trigger/id/iso efficiency corrections data/ MC evaluated in bins of p_T and η and charge. Dominant uncertainty is the statistical uncertainty of the Z sample.

Experimental corrections: Muon

Experimental corrections: Hadronic Recoil

Vector sum of the momenta of all clusters measured in the calorimeters excluding energy deposits associated with the decay leptons

$$\overrightarrow{u_T} = \sum \vec{E}_T$$
$$\vec{E}_T^{Miss} = -(\overrightarrow{u_T} + \vec{p}_T^{lep})$$

Calibrate the scale (resolution) of the recoil using $u_{\parallel}(u_{\perp})$ from Z events

Experimental corrections: Hadronic Recoil

W mass-sensitive distributions

W mass at ATLAS

Z mass validation

Results are consistent with the combined LEP value of mz within experimental uncertainties

2022/04/14

Summary of corrections

After all corrections are applied, consistent results are achieved between different channels, observables, categories, charges and only after, results were unblinded.

W mass at ATLAS

Consistency of the results

The consistency of the results was checked in the different categories but also in different pileup, recoil bins

W mass at ATLAS

Run-I result

consistent with the SM expectation

- $m_W = 80369.5 \pm 6.8 \text{ MeV}(\text{stat.}) \pm 10.6 \text{ MeV}(\text{exp. syst.}) \pm 13.6 \text{ MeV}(\text{mod. syst.})$
 - = 80369.5 \pm 18.5 MeV,

2022/04/14

- Introduction
- W-mass measurement using LHC Run-I data
- W mass @ ATLAS Run-II & future prospects

Limit in 7-TeV measurement:

Recoil energy resolution is significantly worse when pileup grows:

Recoil uncertainty on mW:

W^+		V	V^{-}	Combined		
p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	
2.6	14.2	2.7	11.8	2.6	13.0	

 M_T^W has best sensitivity to W mass, which was affected due to the unavoidable recoil calibration problem in Run-I data.

Reduction of p_T^W uncertainty

The measurement to p_T^W with uncertainty < 1% in bins of ~5 GeV will untangle the mechanisms for both resummation and re-tune parton shower, and half the corresponding uncertainty (6 MeV -> 3 MeV).

Published p_T^W and p_T^Z ratio:

Limited precision of the data (~3%), and broad bin width (~8 GeV) limit the impact of these measurements on the systematic uncertainty.

The target precision is only achievable when recoil resolution halved.

Special requested Low-pile-up Run:

- 13TeV: 155 pb⁻¹ (2017 Nov.) + 193 pb⁻¹ (2018 Jul.)
 ~ 4M W candidates,
- STeV: 25 pb⁻¹(2015) ⇒ 258 pb⁻¹ (2017 Nov.)
 - \sim 1.5M W candidates

On-going studies:

- W and Z transverse momentum measurements at 5 and 13 TeV
- W and Z production cross-section measurements at 5 and 13 TeV
 - Best precision at the two energies -> improvement to PDF
- W-mass measurement using low-pileup data + reanalysis of 7-TeV data
 - Benefiting from improved recoil / QCD modelling / run-II experimental updates

W mass at Run-II? What to expect?

	Experimenta	al improvements;	theoretical improvements;		
Preliminary Estimation –	Data sample	7TeV, $\mu \sim$ 9	13TeV, $\mu \sim$ 2	5TeV, $\mu \sim$ 2	
	Luminosity	4.5 fb ⁻¹	0.3 <i>fb</i> ⁻¹	0.2 <i>fb</i> ⁻¹	
	Nb. of candidates	\sim 15 $ imes$ 10 ⁶	\sim 4 $ imes$ 10 ⁶	\sim 1.4 $ imes$ 10 6	
	Observables	p_T^{lep}	$p_T^{lep} + m_T^W$	$p_T^{lep} + m_T^W$	
Combine two observables	Stat.	7	8	12	
	Lepton calibration	7	7	7	
New Run-II strategies & extrapolatio	n Lepton efficiencies	7	5	5	
Low-mu, but limited by stat	Recoil calibration	3	5(7)	3(8)	
Optimized MJ procedure	Backgrounds	5	3	2	
New prediction at NNLO	EW	5	2	2	
This measured p_T^W	$QCD(p_T^W)$	6	<3	<3	
Fixed angular coefficient	QCD(Spin)	6	<3	<3	
This measured Xs	PDF	9	6	6	
	Total	19	15	17	

Target: comparable experimental uncertainty, significantly improved theoretical uncertainty

2022/04/14

Prospects in W mass precision

The most urgent tasks to improve W mass precision is the finalization of low-mu p_T^W and Xs measurements. Application of LLH fit (δM as NP) is likely to contribute the most important methodological improvements.

- All theoretical improvements is applicable to 7-TeV measurement: 19 MeV to < 15 MeV
- Further combination of 7-TeV measurement and low-mu measurement

- The first LHC measurement of mW = 80370+/-19 MeV is public after many years of effort in the ATLAS collaboration.
- The central value is consistent with the SM prediction and world average (2017)
- Run-II low-pileup data has potential in bring critical theoretical improvement to W mass at LHC
- The low lumi of low-pileup data is becoming one main limit which could be solved with more low-mu run.