

Some Progress on LQCD Analysis of Charmed Hadrons

王伟

2022.07.28 第四届重味物理与量子色动力学研讨会

- Theoretical tools for charm
- ✓ LQCD
 - $\checkmark E_c$ Decays: form factors and $|V_{cs}|$
 - Hidden Charm Hexaquark

✓ Summary

Charm Quark Physics: SM test

Charm Quark Physics: SM test

First row:

 $|V_{ud}| = 0.97370 \pm 0.00014$ $|V_{us}| = 0.2245 \pm 0.0008$ $|V_{ub}| = 0.00382 \pm 0.00024$

$\begin{pmatrix} V_{ud} \\ V_{cd} \end{pmatrix}$	V_{us} V_{cs}	$\left(\begin{array}{c} V_{ub} \\ V_{cb} \end{array} \right)$	10 ⁻⁴ accuracy	$ V_{ud} ^2 + V_{us} ^2 + V_{ub} ^2 = 0.9985 \pm 0.0006$
V _{td}	<i>V_{ts}</i>	V_{tb}	Second row:	$\begin{aligned} V_{cd} &= 0.221 \pm 0.004 \\ V_{cs} &= 0.987 \pm 0.011 \\ V_{cb} &= 0.0410 \pm 0.0014 \end{aligned}$
			10 ⁻² accuracy	$ V_{cd} ^2 + V_{cs} ^2 + V_{cb} ^2 = 1.025 \pm 0.022$
High p	recision	determin	ation of the seco	ond row provide strong tests of CKM unitarity.

Charm Quark Physics: SM test

 $|V_{cd}| = 0.221 \pm 0.004$ $|V_{cs}| = 0.987 \pm 0.011$ $|V_{cb}| = 0.0410 \pm 0.0014$

determinations of $|V_{cs}|$ can be obtained using the PDG values for the mass and lifetime of the D_s , the masses of the leptons, and $f_{D_s} = (249.9 \pm 0.5)$ MeV [14]. The average of these determinations gives $|V_{cs}| = 0.992 \pm 0.012$, where the error is dominated by the experimental uncertainty. In semileptonic D decays, lattice QCD calculations of the $D \rightarrow K\ell\nu$ form factor are available [14]. Using $f_+^{DK}(0) = 0.765 \pm 0.031$ and the average [24] of CLEO-c [28], Belle [29], BABAR [48], and recent BESIII [26,49] measurements of $D \rightarrow K\ell\nu$ decays, one obtains $|V_{cs}| = 0.939 \pm 0.038$, where the dominant uncertainty is from the theoretical calculation of the form factor. Averaging the determinations from leptonic and semileptonic decays, we find

$$|V_{cs}| = 0.987 \pm 0.011 \,. \tag{12.10}$$

Theoretical difficulties in Charm

Charm Physics Scale

Chiral perturbation theory: $p/(4\pi f_{\pi})$

CP violation in $D^0 \rightarrow K^+ K^-$, $D^0 \rightarrow \pi^+ \pi^-$

LHCb, PRL108, 111602 (2012)

 $\Delta A_{CP} = [-0.82 \pm 0.21 (\text{stat.}) \pm 0.11 (\text{syst.})] \%$

Cheng, Chiang, 1201.0785,	-0.25%
Li, Lu, Yu, 1203.3120,	-0.1%

Brod, Grossman, Kagan, Zupan: Large penguins

LHCb, PRL122, 211803 (2019)

 $\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4},$

- ✓ Quark model:
- ✓ QCD sum rules:
- ✓ Factorization-Assisted Topological-Amplitude:

Li, Lu, Yu, PRD 86, 036012 (2012)

Yu, Wang, Li, PRL 119, 181802(2017)

- ✓ SU(3) symmetry:
- ✓ Lattice QCD

Theoretical tools for Charm

$$\Gamma(\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell) = \Gamma(\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell) = \frac{3}{2} \Gamma(\Lambda_c^+ \to \Lambda^0 \ell^+ \nu_\ell)$$

	channal	branching $ratio(\%)$				
channel		experimental data	SU(3) symmetry			
	$\Lambda_c^+ ightarrow \Lambda^0 e^+ u_e$	$3.6 \pm 0.4 \; [33]$	$3.6\pm0.4~(\mathrm{input})$			
	$\Lambda_c^+ o \Lambda^0 \mu^+ u_\mu$	$3.5 \pm 0.5 \; [33]$	$3.5\pm0.5~(\mathrm{input})$			
	$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	$2.3 \pm 1.5 \; [33]$	12.17 ± 1.35			
	$\Xi_c^0 ightarrow \Xi^- e^+ u_e$	$1.54\pm 0.35~[4,~5]$	4.10 ± 0.46			
	$\Xi_c^0 ightarrow \Xi^- \mu^+ u_\mu$	1.27 ± 0.44 [4]	3.98 ± 0.57			

He, Huang, Wang, Xing, 2110.04179

BES-III: PRL 115, 221805(2015) Belle: PRL 127, 121803(2021) ALICE: 2105.05187

Lattice QCD

> Numerical simulation in discretized 4D Euclidean space-time;

> Lattice QCD: action

$$S_E^{\text{latt}} = -\sum_{\Box} \frac{6}{g^2} \operatorname{Re} \operatorname{tr}_N(U_{\Box,\mu\nu}) - \sum_q \overline{q}(D_{\mu}^{\text{lat}}\gamma_{\mu} + am_q)q$$

Wilson gauge action Lattice fermion action

Correlation functions:

$$\begin{split} \langle \mathcal{O}(U,q,\bar{q}) \rangle &= \frac{\int [\mathcal{D}\mathcal{U}] \prod_{q} [\mathcal{D}q_{q}] [\mathcal{D}\bar{q}_{q}] e^{-S_{E}^{\text{latt}}} \mathcal{O}\left(U,q,\bar{q}\right)}{\int [\mathcal{D}U] \prod_{q} [\mathcal{D}q_{q}] [\mathcal{D}\bar{q}_{q}] e^{-S_{E}^{\text{latt}}}} \\ &= \frac{\int [\mathcal{D}U] e^{-S_{\text{glue}}^{\text{latt}}} \prod_{q} \det \left(D_{\mu}^{\text{latt}} \gamma_{\mu} + am_{q}\right) \tilde{\mathcal{O}}(U)}{\int [\mathcal{D}U] e^{-S_{\text{glue}}^{\text{latt}}} \prod_{q} \det \left(D_{\mu}^{\text{latt}} \gamma_{\mu} + am_{q}\right)} \end{split}$$

Lattice QCD

> Monte Carlo:

- The integration is performed for all link variables: $n_s^3 \times n_t \times N_{color} \times N_{spin}$
- Importance sampling:

$$e^{-S_{\text{glue}}^{\text{latt}}}(U) \prod_{q} \det \left(D_{\mu}^{\text{latt}}(U) \gamma_{\mu} + a m_{q} \right)$$

• Therefore

$$\left< \mathcal{O}(U,q,ar{q}) \right> = rac{1}{N_{ ext{conf}}} \sum_{k=1}^{N_{ ext{conf}}} ilde{\mathcal{O}}\left(U^{(k)}
ight)$$

> Have achieved great successes in calculating hadron masses, decay constants, α_s , form factors and so on.

Lattice size	Lattice spacing	Pion mass	N cfg
24x72	0.108fm	280-290MeV	2000+
32x96	0.08fm	280-300MeV	1000+
48x144	0.055fm	280MeV	producing
48x96	0.108fm	200MeV	producing
48x96	0.108fm	140MeV	prepare

Liuming Liu, Peng Sun, Wei Sun, Yibo Yang

Q.A.Zhang, et.al., Chin.Phys.C 46 (2022) 7, 011002

• Ξ_c contains more versatile decay modes

- $\Xi_c \rightarrow \Xi$ contain different QCD dynamics with $\Lambda_c \rightarrow \Lambda$;

- A different pattern between inclusive and exclusive decays of Λ_c and D:

Form factor on the LQCD

Importance for the experimental researches of heavy baryons:

-Studies of doubly-charmed baryon Ξ_{cc}^{++} decay R. Aaij et al. [LHCb], PRL121, 162002 (2018)

-Precision measurement of the lifetime of Ξ_b^0 R. Aaij et al. [LHCb], PRL113, 032001 (2014)

-Discovery of new exotic hadron candidates Ω_c

R. Aaij et al. [LHCb], PRL118, 182001 (2017)

✓ Experimental

Belle $\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (1.72 \pm 0.10 \pm 0.12 \pm 0.50) \%$ $\mathscr{B}(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu) = (1.71 \pm 0.17 \pm 0.13 \pm 0.50) \%$ ALICE $\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.43 \pm 0.25 \pm 0.35 \pm 0.72) \%$ Y. B. Li et al. [Belle], arXiv:2103.06496 [hep-ex].

J. Zhu on behalf of the ALICE collaboration, PoS ICHEP2020 (2021) 524.

Theoretical

QCD SR	$\mathscr{B}\left(\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e}\right)=(3.4\pm1.7)\%$	Z. X. Zhao, arXiv:2103.09436 [hep-ph].
LF QM	$\mathcal{B}\left(\Xi_c^0\to\Xi^-e^+\nu_e\right)=\left(3.49\pm0.95\right)\%$	C. Q. Geng et al, arXiv:2012.04147 [hep-ph].
LCSR	$\mathcal{B}\left(\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e}\right)=(2.4^{+0.9}_{-1.0})\%$	Y. L. Liu et al, J. Phys. G 37, 115010 (2010).

Lattice

16

	$\beta = \frac{10}{g^2}$	$L^3 \times T$	a	$C_{ m SW}$	κ_l	m_{π}	κ_s	m_{η_s}
s108	6.20	$24^3 \times 72$	0.108	1.161	-0.2770	290	0.1330	640
s080	6.41	$32^3 \times 96$	0.080	1.141	-0.2295	300	0.1318	650

Zhang, Hua, et.al., 2103.07064, To appear in Chinese Physics C

Form factor on the LQCD

- -Extrapolate to the continuum limit (shaded regions);
- *z*-expansion parametrization to obtain the q^2 -distribution:

$$f(q^{2}) = \frac{1}{1 - q^{2} / (m_{\text{pole}}^{f})^{2}}$$
$$\sum_{n=0}^{n_{\text{max}}} \left(c_{n}^{f} + d_{n}^{f}a^{2}\right) \left[z\left(q^{2}\right)\right]$$

- _ Use D_s meson pole mass for $m_{\text{pole}}^{f_\perp}$, ...
- Consider the discretization effects by estimating the d_n^f terms.

Fit results for the *z*-expansion parameters

	c_0	c_1	c_2
f_{\perp}	$1.51 {\pm} 0.09$	$-1.88 {\pm} 1.21$	$1.71 {\pm} 0.49$
$f_{ m O}$	$0.64 {\pm} 0.09$	-1.83 ± 1.22	$0.56 {\pm} 0.51$
f_+	$0.77{\pm}0.07$	$-4.09{\pm}1.18$	$0.35 {\pm} 0.49$
g_\perp	$0.56{\pm}0.07$	$-0.35 {\pm} 1.26$	$0.15 {\pm} 0.29$
g_0	$0.63{\pm}0.07$	$-1.37 {\pm} 1.36$	$0.15 {\pm} 0.29$
g_+	$0.56{\pm}0.08$	$0.00{\pm}1.38$	$0.14{\pm}0.29$

-Predicted decay branching fractions:

$$\begin{aligned} \mathscr{B} \left(\Xi_c^0 \to \Xi^- e^+ \nu_e \right) &= 2.38(0.30)(0.32)(0.07) \% \\ \mathscr{B} \left(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu \right) &= 2.29(0.29)(0.30)(0.06) \% \\ \mathscr{B} \left(\Xi_c^+ \to \Xi^0 e^+ \nu_e \right) &= 7.18(0.90)(0.96)(0.20) \% \\ \mathscr{B} \left(\Xi_c^+ \to \Xi^0 \mu^+ \nu_\mu \right) &= 6.91(0.87)(0.91)(0.19) \% \end{aligned}$$

- Statistical errors
- Systematic errors from continuum extrapolation
- Systematic errors from renormalization

-Compare with PDG, experiment and theory: \rightarrow (2.38 ± 0.44) %

PDG $\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (1.8 \pm 1.2) \%$

Belle $\mathscr{B}\left(\Xi_c^0 \to \Xi^- e^+ \nu_e\right) = (1.72 \pm 0.10 \pm 0.12 \pm 0.50)\%$

ALICE $\mathscr{B}\left(\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e}\right) = (2.43\pm0.25\pm0.35\pm0.72)\,\%$

QCD SR $\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (3.4 \pm 1.7) \%$

LF QM $\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (3.49 \pm 0.95) \%$ LCSR $\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.4^{+0.9}_{-1.0}) \%$ Fitted well with all

data (within $1-\sigma$)!

Y. B. Li et al. [Belle], arXiv:2103.06496 [hep-ex].

$$\mathscr{B}\left(\Xi_{c}^{0} \to \Xi^{-}e^{+}\nu_{e}\right) = (1.72 \pm 0.10 \pm 0.12 \pm 0.50)\,\%$$
$$\mathscr{B}\left(\Xi_{c}^{0} \to \Xi^{-}\mu^{+}\nu_{\mu}\right) = (1.71 \pm 0.17 \pm 0.13 \pm 0.50)\,\%$$

 $|V_{cs}| = 0.834 \pm (0.051)_{\text{stat.}} \pm (0.056)_{\text{syst.}} \pm (0.127)_{\text{exp.}}$ Theo. error ~ 8.9% Exp. error ~ 15.2%

-From ALICE measurements: J. Zhu, PoS ICHEP2020 (2021) 524. $\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.43 \pm 0.25 \pm 0.35 \pm 0.72)$

 $|V_{cs}| = 0.983 \pm (0.060)_{\text{stat.}} \pm (0.065)_{\text{syst.}} \pm (0.167)_{\text{exp.}}$ Exp. error ~ 17.0%

-Compare with PDG result:

 $|V_{cs}| = 0.987 \pm 0.011$ $|\downarrow V_{cs}| = 0.939 \pm 0.038 \quad D \rightarrow K \ell \square$ From the uncertainty of $\Xi_c^0 \rightarrow \Xi^- \pi^+$

Theoretical uncertainties:

- total ~ 8.9%
- statistical ~ 6.1%
- systematic from
- extrapolation ~ 6.5%
- systematic from renormalization ~ 1.5%

Experimental uncertainties:

- Belle ~ 15.2%
- ALICE ~ 17.0%

H. Liu, et.al., 2207.00183

$|p>=|uud>+|uud\bar{q}q>+\cdots <0|O_{uud}|p>\neq 0$

 $0^{++}: \mathcal{O}_1 = \epsilon^{abc} \epsilon^{def} [u_a^T C \gamma_5 s_b] [\bar{d}_d C \gamma_5 \bar{s}_e^T] \times [\bar{c}_f c_c]$ $0^{-+}: \mathcal{O}_2 = \epsilon^{abc} \epsilon^{def} [u_a^T C \gamma_5 s_b] [\bar{c}_d C \gamma_5 \bar{s}_e^T] \times [\bar{c}_f \gamma_5 c_c]$ $1^{++}: \mathcal{O}_3 = \epsilon^{abc} \epsilon^{def} [u_a^T C \gamma_5 s_b] [\bar{d}_d C \gamma_5 \bar{s}_e^T] \times [\bar{c}_f \gamma_i \gamma_5 q_c]$ $1^{--}: \mathcal{O}_4 = \epsilon^{abc} \epsilon^{def} [u_a^T C \gamma_5 s_b] [\bar{d}_d C \gamma_5 \bar{s}_e^T] \times [\bar{c}_f \gamma_i c_c].$

Hexaquark

	β	$L^3 \times T$	a	κ_l	m_π	κ_s	κ_c
C11P29S	6.2	$24^3 \times 72$	0.108	0.1343	285(2)	0.1327	0.1117
C11P22M	6.2	$32^3 \times 64$	0.108	0.1344	220(2)	0.1326	0.1116
C08P30S	6.41	$32^3 \times 96$	0.080	0.1326	301(3)	0.1316	0.1181
C06P30S	6.72	$48^3 \times 144$	0.054	0.1311	311(6)	0.1305	0.1227

 \overline{C}

 \overline{u}

 \overline{S}

S

_6

C06P30S

27

$I(J^{PC})$	$1(0^{-+})$	$1(1^{})$	$1(0^{++})$	$1(1^{++})$
mass(GeV)	3.945(32)	4.144(35)	4.15(20)	4.22(23)
		-		

$$m_H(m_{\pi}, a) = m_{H, \mathrm{phys}} + g_1^H(m_{\pi}^2 - m_{\pi, \mathrm{phys}}^2) + g_2^H a^2$$

物理延拓

$I(J^{PC})$	$1(0^{-+})$	$1(1^{})$	$1(0^{++})$	$1(1^{++})$
mass(GeV)	3.945(32)	4.144(35)	4.15(20)	4.22(23)

the 0⁻⁺ hexaquark might mix with $K^+K^-\eta_c$: 3.971 GeV

 $\Delta m\equiv {
m log}rac{C_{2,O_2}}{C_{2,K}^2C_{2,\eta_c}}$

- ✓ Charmed Hadrons: testing SM, probing NP, understanding QCD
- ✓ A set of new configurations have been generated and can be used for multi-purpose phenomenological analysis.
- ✓ The first lattice QCD calculation of Ξ_c → Ξ form factors and CKM matrix element:
 |V_{cs}| = 0.834 ± 0.051 ± 0.056 ± 0.127. Belle data
 |V_{cs}| = 0.983 ± 0.060 ± 0.065 ± 0.167. ALICE data
 ✓ Hidden-charm hexaquark candidates on LQCD: 4 ensembles. Tightly-bounded
- ✓ More exciting analyses of charmed hadrons:
 - ✓ Computational resources
 - ✓ New LQCD ensembles
 - ✓ More human resources

backup

$$V_{ub}V_{ud}^{*} + V_{cb}V_{cd}^{*} + V_{tb}V_{td}^{*} = 0$$

$$(\bar{\rho},\bar{\eta})$$

$$(\bar{\rho},\bar{\eta$$

PDG2021

$$\alpha = (84.9^{+5.1}_{-4.5})^{\circ}$$

$$\beta = (22.2 \pm 0.7)^{\circ} \quad \sin(22.1 \pm 0.7)^{\circ}$$

$$\gamma = (72.1^{+4.1}_{-4.5})^{\circ}$$

$$\alpha + \beta + \gamma = (179^{+7}_{-6})^{\circ}$$

 $sin(2\beta) = 0.699 \pm 0.017$

Charm Quark Physics: Inputs for B decays

Direct CPA in D decays $(D^0 \rightarrow K^+K^-/\pi^+\pi^-)$ can give an important corrections to $\gamma: (0.5^\circ - 5^\circ)$ [WW, PRL110, 061802(2013) Martone and Zupan , PRD87 , 034005(2013) Bhattacharya, et.al, PRD87, 074002 (2013)]

✓ GLW: CP eigenstate [PLB 265, 172 (1991); PLB 253, 483 (1991)]
 ✓ ADS: Doubly-Cabibbo-suppressed [PRL78, 3257 (1997)]
 ✓ Dalitz: multi-body D decays [PRD68, 054018 (2003)]

The knowledge of charmed hadron decays at BESIII and other experimental facilities are prerequisites.