The mass spectrum and wave functions of the Bc system

Guo-Li Wang Hebei University

In collaboration with

Tianhong Wang, Qiang Li, Chao-Hsi Chang

JEHP 05 (2022) 006

outline

- Motivation
- Meson and its description—3 categories
- Wave functions and partial waves
- Mass spectra
- Summary

Motivation

Bc(2S) and B*c(2S) are already detected,

$$M(B_c^*) - M(B_c) > M(B_c^*(2S)) - M(B_c(2S))$$

Atlas PRL 113 (2014) 212004, CMS PRL 122 (2019) 132001

- Bc(3S) can be found via their strong decays, R. Ding, B.D. Wan, Z.Q. Chen, G.L. Wang, C.F. Qiao, PLB 816 (2021) 136277
- S-D mixing $|\psi(3770)\rangle = |1^3D_1\rangle\cos\theta + |2^3S_1\rangle\sin\theta,$ $|\psi(3686)\rangle = -|1^3D_1\rangle\sin\theta + |2^3S_1\rangle\cos\theta$
- ${}^1P_1 {}^3P_1$ mixing $|D_1(2420)\rangle = |\frac{3}{2}\rangle = \cos\theta|{}^1P_1\rangle + \sin\theta|{}^3P_1\rangle,$ $|D_1'(2430)\rangle = |\frac{1}{2}\rangle = -\sin\theta|{}^1P_1\rangle + \cos\theta|{}^3P_1\rangle.$
- In a relativistic method, e.g. solving the Bethe-Salpeter equation or Salpeter equation, how about upper mixings

Meson and its description

- Usually using ${}^{2S+1}L_J$ or $J^{P(C)}$ to describe a meson
- Non-relativistic $^{2S+1}L_J$

	S = 0	S = 1	S = 1	S = 1
\overline{S}	$^{1}S_{0}\ (0^{-+})$	$^{3}S_{1} (1^{})$		
P	$^{1}P_{1}$ (1^{+-})	$^{3}P_{0} (0^{++})$	$^{3}P_{1}$ (1 ⁺⁺)	$^{3}P_{2} (2^{++})$
D	$^{1}D_{2}\ (2^{-+})$	$^{3}D_{1} (1^{})$	$^{3}D_{2} (2^{})$	$^{3}D_{3} (3^{})$
F	$^{1}F_{3}$ (3 ⁺⁻)	$^{3}F_{2}$ (2 ⁺⁺)	$^{3}F_{3}$ (3 ⁺⁺)	$^{3}F_{4}$ (4 ⁺⁺)
G	$^{1}G_{4}\ (4^{-+})$	$^{3}G_{3}$ (3)	$^{3}G_{4} (4^{})$	$^{3}G_{5}$ (5)

Meson and its description

• Relativistic $J^{P(C)}$

$$\overline{J} = 0 \qquad 0^{-(+)} \, (^{1}S_{0}) \qquad 0^{+(+)} \, (^{3}P_{0})
J = 1 \qquad 1^{-(-)} \, (^{3}S_{1}, \, ^{3}S_{1} - ^{3}D_{1}, \, ^{3}D_{1}) \qquad 1^{++} \, (^{3}P_{1}) \qquad 1^{+-} \, (^{1}P_{1}) \qquad 1^{+} \, (^{3}P_{1} - ^{1}P_{1})
J = 2 \qquad 2^{+(+)} \, (^{3}P_{2}, \, ^{3}P_{2} - ^{3}F_{2}, \, ^{3}F_{2}) \qquad 2^{--} \, (^{3}D_{2}) \qquad 2^{-+} \, (^{1}D_{2}) \qquad 2^{-} \, (^{3}D_{2} - ^{1}D_{2})
J = 3 \qquad 3^{-(-)} \, (^{3}D_{3}, \, ^{3}D_{3} - ^{3}G_{3}, \, ^{3}G_{3}) \qquad 3^{++} \, (^{3}F_{3}) \qquad 3^{+-} \, (^{1}F_{3}) \qquad 3^{+} \, (^{3}F_{3} - ^{1}F_{3})$$

Three categories

- 1. 0^- and 0^+
- 2. Natural parity 1^- , 2^+ and 3^-
- 3. Unnatural parity 1^+ , 2^- and 3^+

Wave function

$$\varphi_{P}^{0^{-}}(q_{\perp}) = \left(a_{1}M + a_{2} P + a_{3} \not q_{\perp} + a_{4} \frac{\not q_{\perp} P}{M}\right) \gamma^{5}$$

$$\varphi_{P}^{0^{-}}(q_{\perp}) = M \left(a_{1} + a_{2} \frac{\not P}{M} - a_{1}x_{\perp} \not q_{\perp} + a_{2}x_{+} \frac{\not q_{\perp} P}{M}\right) \gamma^{5}$$

$$x_{+} = \frac{\omega_{1} + \omega_{2}}{m_{1}\omega_{2} + m_{2}\omega_{1}}, \quad x_{-} = \frac{\omega_{1} - \omega_{2}}{m_{1}\omega_{2} + m_{2}\omega_{1}}$$

$$\omega_{1} = \sqrt{m_{1}^{2} - q_{\perp}^{2}}, \quad \omega_{2} = \sqrt{m_{2}^{2} - q_{\perp}^{2}}$$

•
$$J^{PC}$$

$$\varphi_P(q) = \eta_P \gamma_0 \varphi_{P'}(q') \gamma_0, \ P' = (P_0, -\vec{P}) \text{ and } q' = (q_0, -\vec{q})$$

$$\varphi_P(q) = \eta_C C \varphi_P^T(-q) C^{-1}, \ C \gamma_5^T C^{-1} = \gamma_5 \text{ and } C \gamma_\mu^T C^{-1} = -\gamma_\mu$$

Partial waves

$$\varphi_P^{0^-}(q_\perp) = \sqrt{4\pi} \left[M Y_{00} \left(a_1 + a_2 \gamma^0 \right) - \frac{|\vec{q}|}{\sqrt{3}} (Y_{1-1} \gamma^+ + Y_{11} \gamma^- - Y_{10} \gamma^3) (a_3 + a_4 \gamma^0) \right] \gamma^5$$

a1 and a2 terms are S waves, non-relativistic a3 and a4 terms are P waves, relativistic correction

Non-relativistic

$$\varphi_P^{^1S_0}(q_\perp) = (a_1M + a_2 \not P) \gamma^5$$

• Normalization $\propto S^2$

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{2Ma_1a_2(\omega_1m_2 + \omega_2m_1)}{\omega_1\omega_2} = 1$$

• Full normalization $\propto (S+P)^2$

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{8M\omega_1\omega_2 a_1 a_2}{(\omega_1 m_2 + \omega_2 m_1)} = 1$$

• S: P=1: 0.082; 1: 0.091; 1: 0.097 for 1S, 2S, 3S Bc states

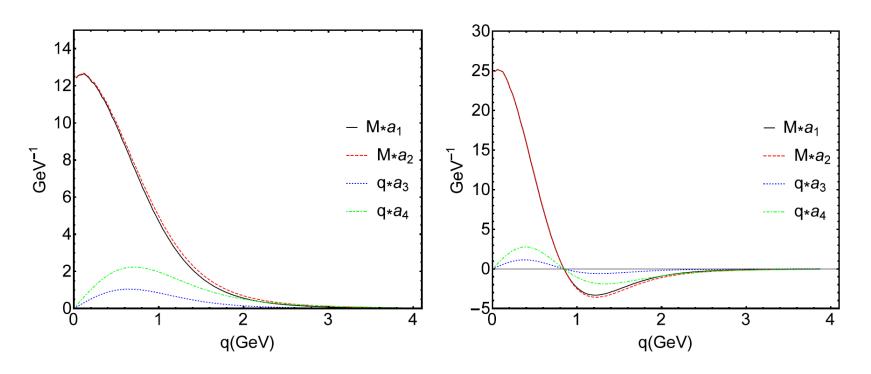


Figure 1. The 0^- wave functions of the ground state $B_c(1S)$ (left) and the first excited state $B_c(2S)$ (right). a_1 and a_2 terms are S waves; a_3 and a_4 terms are P waves.

$$\varphi_P^{0^+}(q_\perp) = b_1 \not q_\perp + b_2 \frac{\not P \not q_\perp}{M} + b_3 M + b_4 \not P$$

$$b_3 = \frac{b_1 q_\perp^2 x_+}{M}, \quad b_4 = \frac{b_2 q_\perp^2 x_-}{M}.$$

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{8\omega_1 \omega_2 \vec{q}^2 b_1 b_2}{M(m_1 \omega_2 + m_2 \omega_1)} = 1$$

$$\varphi_P^{^3P_0}(q_\perp) = b_1 \not q_\perp + b_2 \not \frac{\not P \not q_\perp}{M} \qquad \int \frac{d\vec{q}}{(2\pi)^3} \frac{2\vec{q}^2 b_1 b_2 (m_1 \omega_2 + m_2 \omega_1)}{M \omega_1 \omega_2} = 1$$

• P: S = 1: 0.097; 1: 0.10; 1: 0.11 for 1P, 2P, 3P Bc

zero-q is S wave, one-q P wave, two is D, three is F...

$$\varphi_P^{1^-}(q_\perp) = \epsilon \cdot q_\perp \left[c_1 + \frac{\cancel{P}}{M} c_2 + \frac{\cancel{q}_\perp}{M} c_3 + \frac{\cancel{P} \cancel{q}_\perp}{M^2} c_4 \right] + M \not\in c_5$$

$$+ \not\in \cancel{P} c_6 + (\not q_\perp \not\in -\epsilon \cdot q_\perp) c_7 + \frac{1}{M} (\not P \not\in \not q_\perp - \not P \epsilon \cdot q_\perp) c_8,$$

- So it is S-P-D mixing state
- Normalization

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{8M\omega_1\omega_2}{3(\omega_1 m_2 + \omega_2 m_1)} \left[-3c_5c_6 + \frac{\vec{q}^2}{M^2} \left(-c_4c_5 + c_3c_6 + c_3c_4 \frac{\vec{q}^2}{M^2} \right) \right] = 1$$
It is $\propto (S + P + D)^2$

• Pure S wave $\varphi_P^{^3S_1}(q_\perp) = M \not\in c_5 + \not\!P \not\in c_6$,

with
$$-\int \frac{d\vec{q}}{(2\pi)^3} \frac{2Mc_5c_6(\omega_1 m_2 + \omega_2 m_1)}{\omega_1\omega_2} = 1. \quad \propto (S)^2$$

• Pure D wave $\varphi_P^{^3D_1}(q_\perp) = \epsilon \cdot q_\perp \left(\frac{\not q_\perp}{M} \ c_3 + \frac{\not P \not q_\perp}{M^2} \ c_4\right)$,

With
$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{2c_3c_4\vec{q}^4(\omega_1m_2 + \omega_2m_1)}{3M^3\omega_1\omega_2} = 1 \propto (D)^2$$

So S: P: D=1: 0.09: 0.037; 1: 0.097: 0.044; -0.576: 0.48: 1 for 1S, 2S, 1D dominant states. If delete P wave, then obtain the S-D mixing angle for 1D dominant state: $\theta = 30^{\circ}$

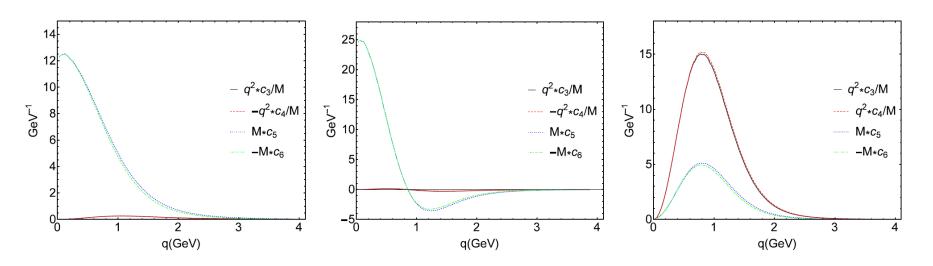


Figure 3. The 1⁻ wave functions of the $B_c^*(1S)$ (left), $B_c^*(2S)$ (middle) and the S-P-D mixture $B_c^*(1D)$ (right). c_3 and c_4 terms are D waves; c_5 and c_6 terms are S waves.

$$\varphi_P^{2^+}(q_\perp) = \epsilon_{\mu\nu} q_\perp^{\mu} \left\{ q_\perp^{\nu} \left[d_1 + \frac{\mathcal{P}}{M} d_2 + \frac{\mathcal{A}_\perp}{M} d_3 + \frac{\mathcal{P} \mathcal{A}_\perp}{M^2} d_4 \right] \right.$$
$$\left. + \gamma^{\nu} \left(M d_5 + \mathcal{P} d_6 \right) + \left(\mathcal{A}_\perp \gamma^{\nu} - q_\perp^{\nu} \right) d_7 + \frac{\left(\gamma^{\nu} \mathcal{A}_\perp - q_\perp^{\nu} \right) \mathcal{P}}{M} d_8 \right\},$$

It is P-D-F mixing state, with normalization condition

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{8M\omega_1\omega_2\vec{q}^2}{15(\omega_1m_2 + \omega_2m_1)} \left[-5d_5d_6 + \frac{2\vec{q}^2}{M^2} \left(-d_4d_5 + d_3d_6 + d_3d_4 \frac{\vec{q}^2}{M^2} \right) \right] = 1.$$

• Pure P wave $\varphi_P^{^3P_2}(q_\perp) = \epsilon_{\mu\nu}q_\perp^{\mu}\gamma^{\nu}(Md_5 + Pd_6),$

$$-\int \frac{d\vec{q}}{(2\pi)^3} \frac{2d_5 d_6 \vec{q}^2 M(\omega_1 m_2 + \omega_2 m_1)}{3\omega_1 \omega_2} = 1.$$

$$\qquad \text{Pure F wave} \qquad \varphi_{_P}^{^3F_2}(q_{_\perp}) = \epsilon_{\mu\nu}q_{_\perp}^{\mu}q_{_\perp}^{\nu} \left[\frac{\not q_{_\perp}}{M} d_3 + \frac{\not P \not q_{_\perp}}{M^2} d_4 \right],$$

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{4d_3 d_4 \vec{q}^6 (\omega_1 m_2 + \omega_2 m_1)}{15M^3 \omega_1 \omega_2} = 1.$$

 P: D: F=1: 0.10: 0.039; 1: 0.11: 0.049; -0.633: 0.50: 1 for 1P, 2P, 1F dominant states, respectively

$$\varphi_{P}^{3^{-}}(q_{\perp}) = \epsilon_{\mu\nu\alpha}q_{\perp}^{\mu}q_{\perp}^{\nu} \left[q_{\perp}^{\alpha} \left(e_{1} + \frac{P}{M}e_{2} + \frac{\not q_{\perp}}{M}e_{3} + \frac{\not P \not q_{\perp}}{M^{2}}e_{4} \right) + M\gamma^{\alpha} \left(e_{5} + \frac{\not P}{M}e_{6} + \frac{\not q_{\perp}}{M}e_{7} + \frac{\not P \not q_{\perp}}{M^{2}}e_{8} \right) \right]$$

It is D-F-G mixing state

D: F: G=1: 0.11: 0.043; 1:0.13: 0.052; -0.654: 0.505: 1
 for 1D, 2D and 1G dominant states

$$\varphi_{P}^{1^{+}}(q_{\perp}) = \epsilon \cdot q_{\perp} \left(f_{1} + f_{2} \frac{\cancel{P}}{M} + f_{3} \frac{\cancel{q}_{\perp}}{M} + f_{4} \frac{\cancel{q}_{\perp}}{M^{2}} \right) \gamma^{5}$$

$$+ \frac{i\varepsilon_{\mu\nu\rho\sigma} \gamma^{\mu} P^{\nu} q_{\perp}^{\rho} \epsilon^{\sigma}}{M} \left(g_{1} + g_{2} \frac{\cancel{P}}{M} + g_{3} \frac{\cancel{q}_{\perp}}{M} + g_{4} \frac{\cancel{q}_{\perp}}{M^{2}} \right),$$

 f_i terms are 1^{+-} (${}^{1}P_1$), g_i are 1^{++} (${}^{3}P_1$), so it is ${}^{1}P_1 - {}^{3}P_1$ mixing state.

$$\begin{split} \varphi_{P}^{1^{+}}(q_{\perp}) &= \epsilon \cdot q_{\perp} \left(f_{1} + f_{2} \frac{P}{M} - f_{1} x_{-} \not q_{\perp} + f_{2} x_{+} \frac{\not q_{\perp} \not P}{M} \right) \gamma^{5} \\ &+ \frac{i \varepsilon_{\mu\nu\rho\sigma} \gamma^{\mu} P^{\nu} q_{\perp}^{\rho} \epsilon^{\sigma}}{M} \left(g_{1} + g_{2} \frac{\not P}{M} - g_{1} x_{-} \not q_{\perp} + g_{2} x_{+} \frac{\not q_{\perp} \not P}{M} \right). \end{split}$$

Normalization

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{8\omega_1 \omega_2 \vec{q}^2}{3M(m_1 \omega_2 + m_2 \omega_1)} (f_1 f_2 - 2g_1 g_2) \equiv \cos^2 \theta + \sin^2 \theta = 1.$$

where the mixing angle is defined by wave function

• There is also P and D partial waves, f1,f2,g1,g2 terms are pure P waves, with normalization condition

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{2(m_1\omega_2 + m_2\omega_1)\vec{q}^2}{3M\omega_1\omega_2} (f_1f_2 - 2g_1g_2) \equiv \cos^2\varphi + \sin^2\varphi = 1.$$

- Solutions appear in pairs, first and second are 1P, third and fourth are 2P, etc
- First two $1^1P_1: 1^3P_1=0.284:0.716 \text{ and } 0.716:0.284$ with mixing angle $\theta_{1P}=-57.8^\circ \text{ or } 32.2^\circ$
- 3, 4 $2^1P_1:2^3P_1=0.263:0.737$ and 0.737:0.263, $\theta_{2P}=-59.1^\circ$ or $30.9^\circ.$
- Pure P wave: $\varphi_{nP} = \theta_{nP}$
- P: D = 1: 0.0971 for two 1P P: D = 1: 0.0936 for two 2P



Figure 6. The 1⁺ wave functions of the $1^1P_1 - 1^3P_1$ mixing states $B_{c1}(1P)$ (left) and $B'_{c1}(1P)$ (right). f_1 and f_2 terms are 1P_1 waves; g_1 and g_2 terms are 3P_1 waves.



Figure 7. The 1⁺ wave functions of the $2^1P_1 - 2^3P_1$ mixing states $B_{c1}(2P)$ (left) and $B'_{c1}(2P)$ (right). f_1 and f_2 terms are 1P_1 waves; g_1 and g_2 terms are 3P_1 waves.

$$\varphi_P^{2^-}(q_\perp) = \epsilon_{\mu\nu} q_\perp^\mu q_\perp^\nu \left(h_1 + \frac{P}{M} h_2 + \frac{\not q_\perp}{M} h_3 + \frac{\not P \not q_\perp}{M^2} h_4 \right) \gamma^5$$

$$+ \frac{i \varepsilon_{\mu\nu\alpha\beta} \gamma^\mu P^\nu q_\perp^\alpha \epsilon^{\beta\delta} q_{\perp\delta}}{M} \left(i_1 + \frac{\not P}{M} i_2 + \frac{\not q_\perp}{M} i_3 + \frac{\not P \not q_\perp}{M^2} i_4 \right)$$

$$2^- \text{ state is a } {}^1D_2 - {}^3D_2 \text{ mixture}$$

Normalization and mixing angle

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{8\omega_1 \omega_2 \vec{q}^4}{15M(m_1 \omega_2 + m_2 \omega_1)} (2h_1 h_2 - 3i_1 i_2) \equiv \cos^2 \theta + \sin^2 \theta = 1$$

First and second solutions

$$1^{1}D_{2}: 1^{3}D_{2} = 0.277: 0.723 \text{ and } 0.723: 0.277$$

$$\theta_{1D} = -58.2^{\circ} \text{ or } 31.8^{\circ} \quad D: F = 1:0.106$$

Third and fourth solutions

$$2^{1}D_{2}: 2^{3}D_{2} = 0.291: 0.709 \text{ and } 0.709: 0.291$$

$$\theta_{2D} = -57.4^{\circ} \text{ or } 32.6^{\circ}$$
 $D: F = 1:0.108$

Mass spectra

$n^{2S+1}L_J$	J^P	ours	[38]	[39, 40]	[41]	[42]	[55]	Exp
$1 {}^{1}S_{0}$	0-	6277 (input)	6271	6272	6275	6271 (input)	6276	$6274.9 \pm 0.8 \ [56]$
$1\ ^3S_1$	1-	6332 (input)	6338	6333	6329	6326 (input)	6331	6333 [27]
$2\ ^{1}S_{0}$	0-	6867	6855	6842	6867	6871 (input)		$6871.6 \pm 1.1 \ [56]$
$2\ ^3S_1$	1-	6911	6887	6882	6898	6890		6900.1 [27]
$3~^1S_0$	0-	7228	7250	7226	7254	7239		
$3\ ^3S_1$	1-	7272	7272	7258	7280	7252		
$1 {}^{3}P_{0}$	0+	6705 (input)	6706	6699	6693	6714	6712	
$1 P_1$	1+	6739 (input)	6741	6743	6731	6757	6736	
$1 P_1'$	1+	6748	6750	6750	6739	6776		
$ heta_{1P}$		$-57.8^{\circ}(32.2^{\circ})$	22.4°	20.5°	18.7°	35.5°	$33.4 \pm 1.5^{\circ} \ [37]$	
$1 \ ^3P_2$	2^{+}	6762 (input)	6768	6761	6751	6787		
$2^{-3}P_{0}$	0+	7112	7122	7094	7105	7107		
$2 P_1$	1+	7144	7145	7134	7136	7134		
$2 P_1'$	1+	7149	7150	7147	7144	7150		
θ_{2P}		$-59.1^{\circ}(30.9^{\circ})$	18.9°	23.2°	21.2°	38.0°		
$2^{-3}P_{2}$	2^+	7163	7164	7157	7155	7160		

Mass spectra

$n^{2S+1}L_J$	J^P	ours	[38]	[39, 40]	[41]	[42]
$1 {}^{3}D_{1}$	1-	7014 (S - P - D)	7028	7021	7007	7020
$2^{-3}D_1$	1-	7335 (S - P - D)		7392	7347	7336
$1~^3F_2$	2^+	7239 (P - D - F)	7269	7232	7234	7235
$2\ ^3F_2$	2^+	7508 (P - D - F)		7618		7518
$1 {}^3D_3$	3-	7035 (input)	7045	7029	7011	7030
$1 D_2$	2-	7025 (input)	7036	7025	7006	7024
$1 D_2'$	2-	7029	7041	7026	7016	7032
$ heta_{1D}$		$-58.2^{\circ}(31.8^{\circ})$	44.5°	-35.9°	-49.2°	45.0°
$2 \ ^{3}D_{3}$	3-	7355		7405	7351	7348
$2 D_2$	2-	7345		7399	7339	7343
$2 D_2'$	2-	7349		7400	7359	7347
θ_{2D}		$-57.4^{\circ}(32.6^{\circ})$			-40.3°	45.0°

Summary

- There are three categories of mesons.
- All states have different partial waves.
- The mixing of different waves naturally appears in relativistic method, not manmade, only one wave function is needed.
- In a relativistic method, the mixing angle can be calculated by wave function, not potential.

Thank you