From linear algebra to Feynman integrals

Yan-Qing Ma (马滟青) Peking University

Mainly based on works done with: Xin Guan(关鑫), Xiao Liu(刘霄), Zhi-Feng Liu(刘志峰), and Chen-Yu Wang(王辰宇) 1711.09572, 1801.10523, 1912.09294, 2107.01864, 2201.11669, 2201.11637, ...

第四届重味物理与量子色动力学研讨会,2022/07/29,长沙

I. Introduction

- II. Linear space of FIs
- **III. Kinematics**
- **IV. Spacetime and loops**
- **V. Phenomenology**

Why study Feynman integrals

1) Fundamental

- QFT: theoretical foundation of physics at current and future
- Amplitudes: linear combinations of FIs with rational coefficients
- Fls: study of QFT, phenomenology

2) Challenging

- One-loop calculation: satisfactory approach existed as early as 1970s 't Hooft, Veltman, NPB (1979); Passarino, Veltman, NPB (1979); Oldenborgh, Vermaseren (1990)
 Britto, Cachazo, Feng, 0412103; Ossola, Papadopoulos, Pittau, 0609007; Giele, Kunszt, Melnikov, 0801.2237
- 40 years later, no satisfactory method for multi-loop calculation

3) Fun

• Plenty of ideas: large dimension/mass expansion, finite field, algebraic geometry, unitarity cut, intersection theory, uniform transcendental, symbol, ...

> A family of Feynman integrals

 $I_{\vec{\nu}}(D,\vec{s}) = \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{(\mathcal{D}_{1} + \mathrm{i}0^{+})^{\nu_{1}} \cdots (\mathcal{D}_{K} + \mathrm{i}0^{+})^{\nu_{K}}}$

 $\mathcal{D}_{\alpha} = A_{\alpha i j} \ell_i \cdot \ell_j + B_{\alpha i j} \ell_i \cdot p_j + C_{\alpha}$

- ℓ_1, \ldots, ℓ_L : loop momenta; p_1, \ldots, p_E : external momenta;
- *A*, *B*: integers; *C*: linear combination of \vec{s} (including masses)
- $\mathcal{D}_1, \dots, \mathcal{D}_K$: inverse propagators; v_1, \dots, v_K : integers
- $\mathcal{D}_{K+1}, \dots, \mathcal{D}_N$: irreducible scalar products; v_{K+1}, \dots, v_N : non-negative integers

Difficulties of calculating FIs

- Analytical: known special functions are insufficient to express FIs
- Numerical: UV, IR, integrable singularities, ...

Linear algebra

An ancient topic

- 《鸡兔同笼》(chickens and rabbits in the same cage)
- 《九章算术·方程》(Nine Chapters on Mathematical Art · Equations)

Well studied

$$M \vec{x} = \vec{c}$$

- Vector, matrix, determinant, rank
- Gaussian elimination

Fls are completely determined by linear algebra???

The law of conservation of mistery!

IBP equations

Dimensional regularization: vanish at boundary

't Hooft, Veltman, NPB (1972) Chetyrkin, Tkachov, NPB (1981)

- Linear equation: $\sum_{\vec{\nu'}} Q^{\vec{\nu}jk}_{\vec{\nu'}}(D,\vec{s}) I_{\vec{\nu'}}(D,\vec{s}) = 0$
- Q: polynomials in D, \vec{s}
- Plenty of linear equations can be easily obtained by varying: \vec{v}, j, k

Warning: IBP is insensitive to Feynman prescription i0⁺, **suppressed**

> # of equations grows faster than # of FIs

Laporta, Remiddi, 9602417, Gehrmann, Remiddi, 9912329

> A family of FIs form a FINITE-dim. linear space

Proved by: Smirnov, Petukhov, 1004.4199

- Bases of the linear space called master integrals (MIs)
- IBPs reduce tens of thousands of FIs to much less MIs

Laporta's algorithm

Laporta, 0102033

- Solving IBP eqs. automaticaly, to any-loop order
- Public codes: AIR, FIRE, LiteRed, Reduze, Kira, FiniteFlow,...
- Many more private codes
- Warning: time-consuming for complicated problems

FIs \triangleq **Linear algebra** \oplus **Master integrals**

Input:

The same kinematics

The same spacetime dimension

The same number of loops

> Step 1: Set up \vec{s} -DEs of MIs

- Differentiate MIs w.r.t. invariants \vec{s} , such as m^2 , $p \cdot q$
- Solving IBP relations: $\frac{\partial}{\partial s_i} \vec{I}(D, \vec{s}) = A_i(D, \vec{s}) \vec{I}(D, \vec{s})$

Kotikov, PLB(1991)

Step 2: Calculate boundary condition

- Calculate integrals at special value of m^2 , p^2
- Case by case, not systematic, maybe still hard!

Step 3: Solve DEs

• Systematic, not hard (explain later)

Auxiliary mass terms

Liu, YQM, Wang, 1711.09572

$$I_{\vec{\nu}}^{\mathrm{aux}}(D,\vec{s},\eta) = \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}}\cdots\mathcal{D}_{N}^{-\nu_{N}}}{(\mathcal{D}_{1}-\lambda_{1}\eta+\mathrm{i}0^{+})^{\nu_{1}}\cdots(\mathcal{D}_{K}-\lambda_{K}\eta+\mathrm{i}0^{+})^{\nu_{K}}}$$

- $\lambda_i \ge 0$ (typically 0 or 1), an auxiliary mass if $\lambda_i > 0$
- Analytical function of η

Auxiliary FIs

• Physical result obtained by (correct Feynman prescription)

$$I_{\vec{\nu}}(D,\vec{s}) \equiv \lim_{\eta \to i0^{-}} I_{\vec{\nu}}^{\mathrm{aux}}(D,\vec{s},\eta)$$

• 1) Setup η -DEs; 2) Calculate boundary conditions; 3) Solve η -DEs

> Why not proposed in the past a few decades?

- Auxiliary FIs always have massive propagators
- Stereotype in the community: harder to calculate (it is right unless using the method to be explained)

Flow of auxiliary mass

Solve ODEs of MIs

$$\frac{\partial}{\partial \eta} \vec{I}^{\text{aux}}(D, \vec{s}, \eta) = A(D, \vec{s}, \eta) \vec{I}^{\text{aux}}(D, \vec{s}, \eta)$$

If $\vec{I}^{aux}(D, \vec{s}, \infty)$ is known, solving ODEs numerically to obtain $\vec{I}^{aux}(D, \vec{s}, i0^-)$ is a well-studied mathematical problem: Step1: Asymptotic expansion at $\eta = \infty$ Step2: Taylor expansion at analytical points Step3: Asymptotic expansion at $\eta = 0$

> Efficient to get high precision : ODEs, known singularity structure

Boundary values at $\eta \rightarrow \infty$

> Nonzero integration regions as $\eta \to \infty$

• Linear combinations of loop momenta: $\mathcal{O}(\sqrt{|\eta|})$ or $\mathcal{O}(1)$

Beneke, Smirnov, 9711391 Smirnov, 9907471

\succ Simplify propagators at $\eta \rightarrow \infty$

- ℓ_L is the $\mathcal{O}(\sqrt{|\eta|})$ part of loop momenta
- ℓ_S is the $\mathcal{O}(1)$ part of loop momenta
- p is linear combination of external momenta

$$\frac{1}{(\ell_{\rm L}+\ell_{\rm S}+p)^2-m^2-\kappa\,\eta}\sim\frac{1}{\ell_{\rm L}^2-\kappa\,\eta}$$

• Unchange if $\ell_L = 0$ and $\kappa = 0$

Boundary FIs after simplification

- **1**. Simpler FIs with less denominators, if all loop momenta are O(1)
- 2. Vacuum integrals

Iterative strategy

> For boundary FIs with less denominators:

• Calculate them again use AMF method, even simpler boundary FIs

as input (besides vacuum integrals)

Liu, YQM, 2107.01864

- Eventually, leaving only (single-mass) vacuum integrals as input
- Kinematic information can be recovered by linear algebra!
- > Typical single-mass vacuum MIs

Baikov, Chetyrkin, 1004.1153 Lee, Smirnov, Smirnov, 1108.0732 Georgoudis, et. al., 2104.08272

- Much simpler to be calculated
- The same number of loops.

FIs \triangleq **Linear algebra** \oplus **Vacuum integrals**

Input:

No kinematics (no external legs)

The same spacetime dimension

The same number of loops

Is this the end of the story?

$$I_{\vec{\nu}} = \int \frac{\mathrm{d}^{D}\ell_{1}}{\mathrm{i}\pi^{D/2}} \frac{(-\ell_{1}^{2})^{\frac{(L-1)D}{2}-\nu+\nu_{1}}}{(\ell_{1}^{2}-1+\mathrm{i}0^{+})^{\nu_{1}}} \widehat{I}_{\vec{\nu}'}(-1) = \frac{\Gamma(\nu-LD/2)\Gamma(LD/2-\nu+\nu_{1})}{(-1)^{\nu_{1}}\Gamma(\nu_{1})\Gamma(D/2)} \widehat{I}_{\vec{\nu}'}(-1)$$

> Apply AMF method on (L - 1)-loop p-integral

- **1) IBP to setup** η **-DEs**
- **2)** Single-mass vacuum integrals no more than (L 1) loops as input

Single-mass vacuum integrals with *L* loops are determined by that with no more than (L - 1) loops (besides IBP)

• Boundary: 0-loop p-integrals equal 1

> Only IBPs are needed to determine FIs!

- IBPs: linear algebra, exact (in D, \vec{s}) relations between FIs
- Loop integrations are completely avoided!

The 'FICalc' to calculate FIs can be defined as (any given nonsingular D and s):

Liu, YQM, 2201.11637

- 1) If it is a 0-loop p-integral, return 1;
- If it is a single-mass vacuum integral, express it by a p-integral, and call 'FICalc' to calculate the p-integral;
- **3 Otherwise:**
 - a) Introduce η to one propagator (if the mass mode is not possible)
 - b) Setup η -DEs using IBP as input
 - c) Call 'FICalc' to calculate boundary FIs at $\eta \rightarrow \infty$
 - d) Numerically solve η -DEs with given BCs to obtain $\eta \rightarrow i0^-$

$FIs \triangleq Linear algebra$

No other input: No kinematics! No spacetime dimension! No loops!

Package: AMFlow

Download

Liu, YQM, 2201.11669

Link: <u>https://gitlab.com/multiloop-pku/amflow</u>

Name	Last commit	Last update
🗅 diffeq_solver	update	4 hours ago
🗅 examples	update	4 hours ago
bibp_interface	test	6 days ago
C AMFlow.m	update	4 hours ago
M+ CHANGELOG.md	update	4 hours ago
₩¥ FAQ.md	test	6 days ago
🛱 LICENSE.md	test	6 days ago
M+ README.md	update	4 hours ago
C options_summary	update	4 hours ago

Description

 The first (method and) package that can calculate any FI (with any number of loops, any *D* and *s*) to arbitrary precision, *given sufficient resource*

Examples using AMF

Liu, YQM, 2107.01864 Liu, YQM, 2201.11637

Cutting-edge problems

Family	dp	а	b	с	d	e	f
$T_{\rm setup}$	6	20	18	8	1	25	30
$T_{\rm solve}$	7	11	15	6	3	15	42
P_1	95%	99%	96%	99%	98%	94%	93%
$T_{\vec{s}}$	2	916	64	1305	30	1801	63

Time to setup DEs (CPU core hours)

- Results: 16-digit precision, to $\mathcal{O}(\epsilon^4)$
- First step of iteration: cost most time
- All results in (a)-(f) are new, very challenging for all other methods!
- Highly nontrivially checked!
- IBP reduction (bottleneck): C++
- Solve η-DEs: Mathematica. Can be significantly improved

Pheno. applications of AMF

> Two ways to use AMF

- Use AMF to calculate each phase-space point
- Use AMF to generate BCs of \vec{s} -DEs

> Wide range of applications

 Linear propagators; Phase space integrals;
 Complex mass; QCD sum rules; Electroweak corrections; Quarkonia; Higgs; ... Zhang, et.al., 1810.07656 Yang, et.al., 2005.11010 Brønnum-Hansen, et. al., 2108.09222 Baranowski, et. al., 2111.13594 Wu, et. al., 2201.11714 Sang, et. al., 2202.11615 Tao, et. al., 2204.06385 Armadillo, et. al., 2205.03345 Chaubey, et. al., 2205.06339 Zhang, et. al., 2205.06124 Abreu, et. al., 2206.03848 Bonciani, et. al., 2206.10490

 $\Upsilon \to J/\psi + \eta_c(\chi_{cJ})$

...

Zhang, Sang, Zhang, 2205.06124

- Two-loop six external legs, massive particles
- Very challenging for other methods

Other methods to calculate FIs (1)

Sector decomposition

- Using Monte Carlo: time-consuming
- Hard for non-Euclidean kinematic points

> Mellin-Barnes representation

- Using Monte Carlo: time-consuming
- Hard for non-planar diagrams

Difference equations

- Depends on reduction and BCs
- Hard to solve difference equations: BCs, convergence

Hepp, (1966) Binoth, Heinrich, 0004013

Usyukina (1975) Smirnov, 9905323

> Laporta, 0102033 Lee, 0911.0252

Loop-Tree duality (under development)

Using Monte Carlo: time-consuming

Catani, et. al., 0804.3170

Lotty: Bobadilla, 2103.09237

	Plar	nar triangle	Non-planar triangle		
$\frac{s}{m^2}$	LTD (10^{-6})	SECDEC 3.0 (10^{-6})	LTD (10^{-6})	SECDEC 3.0 (10^{-6})	
$-\frac{1}{4}$	9.48(5)	9.4647(9)	4.461(3)	4.4606(4)	
-1	8.10(5)	8.0885(8)	4.101(3)	4.1012(4)	
$-\frac{9}{4}$	6.49(3)	6.4760(6)	3.627(5)	3.6276(3)	
-4	5.02(2)	5.0188(5)	3.15(5)	3.1334(3)	
$+\frac{1}{4}$	10.68(6)	10.651(1)	4.743(3)	4.7436(4)	
1	13.11(8)	13.070(1)	5.259(3)	5.2590(5)	
$+\frac{9}{4}$	20.81(1)	20.748(2)	6.533(3)	6.5331(6)	
$+\frac{25}{16}$	15.74(9)	15.700(1)	5.748(3)	5.7474(6)	

No real phenomenological applications yet

Other methods to calculate FIs (3)

> (Traditional) differential equations

- Depends on reduction and BCs Kotikov, PLB (1991)
- For some cases, ϵ -form exists \Rightarrow analytical

Henn, 1304.1806 Chen, Yang, Zhang, ...

• The frontier: MIs for $2\rightarrow 3$ massless processes at two loops

Onshell: Badger, et. al., 1812.11160 Chicherin, Sotnikov, 2009.07803

- All MIs are known analytically to $\mathcal{O}(1)$
- AMF (numerical): known
 easily to O(ε⁴)

One offshell: Kardos, et. al., 2201.07509

- Hexa-box MIs are known analytically to $\mathcal{O}(1)$
- AMF (numerical): all MIs are known easily to O(ε⁴)

- > 2→2 process with massive particles at twoloop order: almost done $g + g \rightarrow t + \bar{t}$, $g + g \rightarrow H + H(g)$
- > Frontier in the following decade:
 - 2 \rightarrow 3 processes at two loops (3j/ γ , V/H+2j $t\bar{t}$ +j, $t\bar{t}H$,...)
 - 2 \rightarrow 2 processes at three loops (2j/ γ , V/H+j, $t\bar{t}$, HH, ...)
 - $2 \rightarrow 1$ processes at four loops (j, V/H)

Very challenging (without new development)

• Two-loop $g + g \rightarrow H + H(g)$: complete IBP reduction cannot be achieved

Borowka et. al., 1604.06447 Jones, Kerner, Luisoni, 1802.00349

• Four-loop $g + g \rightarrow H$ (NNLP in HTL): 860 days (wall time!)

Davies, Herren, Steinhauser, 1911.10214

- Feynman integrals form a finite-dim. linear space
- > AMF: Feynman integrals can be completely determined once relations in the linear space is clear
- Results in a powerful method to calculate FIs: for the first time, any FI can calculated to high precision

 $\textbf{Impossible} \overset{2022}{\Longrightarrow} \textbf{possible} \overset{future}{\Longrightarrow} \textbf{efficiency}$

Perturbative QFT in the new era: stay tune

Infrared Divergences

> Example: one-loop four-point integral

• **dim-reg** $I[1, 1, 1, 1] = \frac{0.0665971 - 0.101394i}{\epsilon} + (-0.0133705 + 0.287857i).$

• **eta-reg:** $I[1, 1, 1, 1](\eta) \sim (0.0665971 - 0.101394i) \log(\eta) + 0.0250704 + 0.22933i.$

both:

$$I[1, 1, 1, 1](\eta) \sim \eta^{-\epsilon} f_1 + f_2 + \eta^{1/2-\epsilon} f_3,$$

$$f_1 = \frac{-0.0665971 + 0.101394i}{\epsilon} + (0.0384409 - 0.0585265i),$$

$$f_2 = \frac{0.0665971 - 0.101394i}{\epsilon} + (-0.0133705 + 0.287857i),$$

$$f_3 = 0.1309.$$

- take $\eta \rightarrow 0$ first, only f_2 survives;
- take $\epsilon \to 0$ first, $1/\epsilon$ cancels between f_1 and f_2

1. Generate Feynman amplitudes

- Feynman diagrams and Feynman rules
- New developments: unitarity, recurrence relation, CHY, ...

2. Calculate Feynman loop integrals (FIs)

Amplitudes: linear combinations of FIs with rational coefficients

3. Perform phase-space integrations

- Monte Carlo simulation with IR subtractions
- Relating to loop integrals via reverse unitarity (if no jet)

$$\int \frac{\mathrm{d}^D p}{(2\pi)^D} (2\pi) \delta_+(p^2) = \int \frac{\mathrm{d}^D p}{(2\pi)^D} \left(\frac{\mathrm{i}}{p^2 + \mathrm{i}0^+} + \frac{-\mathrm{i}}{p^2 - \mathrm{i}0^+} \right)$$

Differential equations: example

> Due to IBP: DEs of MIs w.r.t. \vec{s}

$$\underbrace{s = p^2}_{m} \underbrace{m}_{m} = \int \frac{\mathrm{d}^D \ell}{\mathrm{i}\pi^{D/2}} \frac{1}{(\ell^2 - m^2)^{\nu_1} [(\ell + p)^2 - m^2]^{\nu_2}}$$

$$\begin{cases} \frac{\partial}{\partial m^2} I_{11} = I_{21} + I_{12} \stackrel{\text{IBP}}{=} \frac{2(D-3)}{4m^2 - s} I_{11} - \frac{D-2}{m^2(4m^2 - s)} I_{10} \\ \frac{\partial}{\partial m^2} I_{10} = I_{20} \stackrel{\text{IBP}}{=} \frac{D-2}{2m^2} I_{10} \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial s} I_{11} = \frac{p^{\mu}}{2s} \frac{\partial}{\partial p^{\mu}} I_{11} = -\frac{1}{2s} \int \frac{\mathrm{d}^{D}\ell}{\mathrm{i}\pi^{D/2}} \frac{2(\ell+p) \cdot p}{(\ell^{2}-m^{2})[(\ell+p)^{2}-m^{2}]^{2}} \\ = -\frac{sI_{12} + I_{11} - I_{02}}{2s} \stackrel{\mathrm{IBP}}{=} a_{11}I_{11} + a_{10}I_{10} \\ \frac{\partial}{\partial s}I_{10} = 0 \end{cases}$$

Boundary Condition

$$\begin{bmatrix} I_{11}|_{m^2 \to 0} = (-s)^{D/2 - 2} \Gamma(2 - D/2) \frac{\Gamma(D/2 - 1)^2}{\Gamma(D - 2)} \\ I_{10} \end{bmatrix}$$

> η -DEs for MIs in auxiliary family using IBP $\frac{\partial}{\partial \eta} \vec{I}^{aux}(D, \vec{s}, \eta) = A(D, \vec{s}, \eta) \vec{I}^{aux}(D, \vec{s}, \eta)$

> To minimize #MIs: usually the propagator mode

Massless two-loop doublepentagon integrals (108 MIs)

Mode	Propagators	Number of MIs		
All	{1,2,3,4,5,6,7,8}	476		
Loop	{4,5,6,7,8}	305		
-	{1,2,3,4,5,6}	319		
Branch	{4,5,6}	233		
	{7,8}	234		
Propagator	{4}	178		
	{5}	176		
	{7}	220		
Mass				

• η -DEs are easier to set up if there are less MIs

Liu, YQM, 2107.01864

η -DEs V.S. \vec{s} -DEs

Liu, YQM, 2107.01864

> Test for various cutting-edge problems

Family	dp	(a)	(b)	(c)	(d)	(e)	(f)
$T_{\eta-\mathrm{DEs}}$	6	20	18	8	1	25	30
$T_{\vec{s}-\text{DEs}}$	2	916	64	1305	30	1801	63

Time to setup DEs (CPU core hours)

- Use propagator mode: easier to set up η -DEs for the auxiliary family than to set up \vec{s} -DEs for the original family!
- Differentiate with η: only increase power of denominator by one
- Differentiate with s
 increase powers of both numerator and denominator by one. Harder to do IBP reduction

A five-loop example

Liu, YQM, 2201.11637

- $-2.073855510286740\epsilon^{-2} 7.812755312590133\epsilon^{-1}$
- $-\ 17.25882864945875 + 717.6808845492140\epsilon$
- $+\,8190.876448160049\epsilon^2+78840.29598046500\epsilon^3$
 - $+\ 566649.1116484678\epsilon^4 + 3901713.802716081\epsilon^5$

 $+ 23702384.71086095\epsilon^6 + 142142936.8205112\epsilon^7,$

- IBP relations are the only input!
- Terms up to $O(\epsilon^4)$ agree with literature; Others are new ($D = 4 2\epsilon$) Lee, Smirnov, Smirnov, 1108.0732
- An arbitrary dimension D = 4/7, challenging for other methods

-9.7931120970486493218087959800691116464281825474654283306146947264431 516031830610056668242341877309401032293901004574319494017206091158244 70822465419388568066195037237209021119616849996640259201636321*10^7

Difficulty of IBP reduction

Solve IBP equations

Laporta's algorithm, 0102033

$$\sum_{\vec{\nu}'} Q^{\vec{\nu}jk}_{\vec{\nu}'}(D,\vec{s}) I_{\vec{\nu}'}(D,\vec{s}) = 0$$

- Very large scale of linear equations (can be billions of) E.g., Laporta 1910.01248
- Equations are coupled
- Explicit solution for multi-scale problem: hard to get, expression can be too large
- **×** Numerical solution at each floating phase space point : too slow

Cutting-edge problems

- Hundreds GB RAM
- Months of runtime using super computer

Usage of FF is common in computer algebra

 $a^{-1} \equiv b \mod p \Leftrightarrow (ab) \equiv 1 \mod p$

 $7 \equiv 2 \mod 5$

 $2^{-1} \equiv 3 \mod 5$

> A better way to solve IBP systems

Manteuffel, Schabinger, 1406.4513 *FireFly:* Klappert, Lange, 1904.00009 *FiniteFlow:* Peraro, 1905.08019

- Solving linear system numerically and then reconstruct analytical solution (using Chinese remainder theorem)
- Avoid intermediate expression swell
- It is now a standard technique in FIs reduction

Trim IBP system

Remove irrelevant FIs Gluza, Kajda, Kosower, 1009.0472 Schabinger, 1111.4220

- Fls with double propagator usually not show up in amplitude
- Can be removed by combining IBPs, constrained by syzygy equations

Solving syzs using module intersection

• IBPs in Baikov representation. *P*: Baikov polynomial; *z_i*: denominator

$$0 = \int dz_1 \cdots dz_m \sum_{i=1}^m \frac{\partial}{\partial z_i} \left(a_i P^{\frac{D-L-E-1}{2}} \frac{1}{z_1^{\nu_1} \cdots z_m^{\nu_m}} \right)$$
Larsen, Zhang, et. al., 1511.01071,
1805.01873, 2104.06866
$$= \int dz_1 \cdots dz_m \sum_{i=1}^m \left(\frac{\partial a_i}{\partial z_i} + \frac{D-L-E-1}{2P} a_i \frac{\partial P}{\partial z_i} - \frac{\nu_i a_i}{z_i} \right) P^{\frac{D-L-E-1}{2}} \frac{1}{z_1^{\nu_1} \cdots z_m^{\nu_m}}$$

- Polynomials list $(a_1, ..., a_m)$ forms a module (generalization of ideal)
- No dimensional shift, module M_1 from syzs: $\left(\sum_{i=1}^m a_i \frac{\partial P}{\partial z_i}\right) + bP = 0$
- No double propagators, module M_2 from syzs: $a_i = b_i z_i$, i = 1, ..., k
- Module intersection $M_1 \cap M_2$ calculable using algebraic geometry

Very promising. No publicly available code yet

Module reconstruction

> IBP system as a module

Liu, Ma, 1801.10523, Guan, Liu, Ma, 1912.09294

 $\sum_{\vec{\nu}'} Q_{\vec{\nu}'}^{\vec{\nu}jk}(D,\vec{s}) I_{\vec{\nu}'}(D,\vec{s}) = 0$

- Taking all FIs as bases, coefficient vectors form a module (different module from previous page)
- Need to know its Gröebner basis (or simplest generators) with polynomial ordering: position over term, degree ordered
- Result: block-triangular form, smallest polynomial degree

Construct simplest generators

- Linear independent subset of Gröebner basis, minimal system
- Input linear system, e.g., from IBPs, trimmed IBPs, or other ways
- One method: sampling and fit. A public code will be released soon!

Application of module reconstruction

Example: two-loop double-pentagon

Liu, YQM, 2107.01864

- Construct DEs: 3000 points
- Block-triangular system: 40 points
- Time =6h=(40*5s+3000*0.05s)*45+...
- Set DEs:90%; solve: 10%.
- New reduction strategy: 100× faster

> Typically faster by 2 orders of magnitude

Family	dp	(a)	(b)	(c)	(d)	(e)	(f)
$T_{\eta-\mathrm{DEs}}$	6	20	18	8	1	25	30
$T_{\vec{s}\text{-}\mathrm{DEs}}$	2	916	64	1305	30	1801	63

Time to setup DEs (CPU core hours)

Ways to bypass IBPs

> 1/D expansion and matching

Baikov, Chetyrkin, Kuhn, 0108197 Baikov, NPB (2003) Baikov, 0507053

m=0:
$$I_{111} = -\left(\frac{4}{p^4}\right)^{-d/2} \left(1 + \frac{13}{4d} + \frac{281}{32d^2} + \frac{2823}{128d^3} + \cdots\right)$$

p 0 p 0

$> 1/\eta$ expansion and matching

Guan, Liu, Ma, 1801.10523, 1912.09294 Wang, Li, Basat, 1901.09390, 2102.08225

$$I_{111}^{\text{aux}} = \eta^{D-3} \left\{ \left[\frac{(D-2)^2}{3D} \frac{p^2}{\eta} \right] I_{2,1}^{\text{bub}} + \left[1 + \frac{D-3}{3} \frac{m^2}{\eta} - \frac{(D+4)(D-3)}{9D} \frac{p^2}{\eta} \right] I_{2,2}^{\text{bub}} + \mathcal{O}(\eta^{-2}) \right\}$$

Intersection theory

Frellesvig, et. al., 1901.11510, 1907.02000 Yang,..

FIS
$$I_{a_1,a_2,...,a_N} \equiv K \int_{\mathcal{C}} u \varphi \equiv K \langle \varphi | \mathcal{C}]_{\omega}$$

$$\varphi \equiv \hat{\varphi} d^N \mathbf{z}, \qquad \hat{\varphi} \equiv \frac{1}{z_1^{a_1} z_2^{a_2} \cdots z_N^{a_N}}, \qquad d^N \mathbf{z} \equiv dz_1 \wedge dz_2 \wedge \cdots \wedge dz_N$$

• Intersection number $\langle \varphi_L | \varphi_R \rangle_{\omega} = \sum_{x \in \mathcal{D}} \operatorname{Res}_{z=p} \left(\psi_p \, \varphi_R \right)$