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1) Fundamental

2) Challenging

’t Hooft, Veltman, NPB (1979); Passarino, Veltman, NPB (1979); Oldenborgh, Vermaseren (1990)

Why study Feynman integrals

Britto, Cachazo, Feng, 0412103; Ossola, Papadopoulos, Pittau, 0609007; Giele, Kunszt, Melnikov, 0801.2237

• One-loop calculation: satisfactory approach existed as early as 1970s

• QFT: theoretical foundation of  physics at current and future

• Amplitudes: linear combinations of  FIs with rational coefficients

• FIs: study of  QFT, phenomenology 

• 40 years later, no satisfactory method for multi-loop calculation

• Plenty of  ideas: large dimension/mass expansion, finite field, algebraic 

geometry, unitarity cut, intersection theory, uniform transcendental, 

symbol, …

3) Fun
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Difficulties of FIs

➢A family of  Feynman integrals

• Analytical: known special functions are insufficient to express FIs

• Numerical: UV, IR,  integrable singularities, …

• ℓ1, … , ℓ𝐿: loop momenta; 𝑝1, … , 𝑝𝐸: external momenta; 

• 𝐴, 𝐵: integers; 𝐶:  linear combination of  Ԧ𝑠 (including masses)

• 𝒟1, … , 𝒟𝐾: inverse propagators; 𝜈1, … , 𝜈𝐾: integers

• 𝒟𝐾+1, … , 𝒟𝑁: irreducible scalar products; 𝜈𝐾+1, … , 𝜈𝑁: non-negative integers

➢Difficulties of  calculating FIs
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➢An ancient topic

➢Well studied

Linear algebra

• Vector, matrix, determinant, rank

• Gaussian elimination

• …

• 《鸡兔同笼》(chickens and rabbits in the same cage)

• 《九章算术⋅方程》(Nine Chapters on Mathematical Art ⋅ Equations)

𝑀 Ԧ𝑥 = Ԧ𝑐

FIs are completely determined by 

linear algebra???

The law of  conservation of  mistery! 
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IBP equations

➢Dimensional regularization: vanish at boundary

• Linear equation:

• 𝑄: polynomials in 𝐷, Ԧ𝑠

𝑞𝜇 = (ℓ1
𝜇

, ⋯ , ℓ𝐿
𝜇

, 𝑝1
𝜇

, ⋯ , 𝑝𝐸
𝜇

)

• Plenty of  linear equations can be easily obtained by varying: Ԧ𝜈, 𝑗, 𝑘

‘t Hooft, Veltman, NPB (1972)

Chetyrkin, Tkachov, NPB (1981)

Warning: IBP is insensitive to Feynman prescription i0+, suppressed
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IBP reduction

Proved by: Smirnov, Petukhov, 1004.4199

➢A family of  FIs form a FINITE-dim. linear space

• Bases of  the linear space called master integrals (MIs) 

• IBPs reduce tens of  thousands of  FIs to much less MIs

➢ # of  equations grows faster than # of  FIs
Laporta, Remiddi, 9602417, Gehrmann, Remiddi, 9912329

➢Laporta’s algorithm

• Solving IBP eqs. automaticaly, to any-loop order

• Public codes: AIR, FIRE, LiteRed, Reduze, Kira, FiniteFlow,… 

• Many more private codes

• Warning: time-consuming for complicated problems

Laporta, 0102033
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Since 90s’

FIs ≜ Linear algebra ⊕ Master integrals

Input:

The same kinematics

The same spacetime dimension

The same number of  loops
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Traditional differential eqs method

➢Step 1: Set up Ԧ𝑠-DEs of  MIs

➢Step 2: Calculate boundary condition

• Differentiate MIs w.r.t. invariants Ԧ𝑠, such as 𝑚2, 𝑝 ⋅ 𝑞

• Solving IBP relations: 

• Calculate integrals at special value of 𝑚2, 𝑝2

• Case by case, not systematic, maybe still hard!

Kotikov, PLB(1991)

➢Step 3: Solve DEs

• Systematic, not hard (explain later)
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➢Auxiliary FIs

• 𝜆𝑖 ≥ 0 (typically 0 or 1), an auxiliary mass if  𝜆𝑖 > 0

• Analytical function of  𝜂

• Physical result obtained by (correct Feynman prescription)

Auxiliary mass terms

➢Why not proposed in the past a few decades?

• Auxiliary FIs always have massive propagators

• Stereotype in the community: harder to calculate 

(it is right unless using the method to be explained)

Liu, YQM, Wang, 1711.09572

• 1) Setup 𝜂-DEs; 2) Calculate boundary conditions; 3) Solve 𝜂-DEs
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➢Solve ODEs of  MIs

Singularity structure

Step1: Asymptotic expansion at 𝜂 = ∞
Step2: Taylor expansion at analytical points

Step3: Asymptotic expansion at 𝜂 = 0

If  Ԧ𝐼𝑎𝑢𝑥(𝐷, Ԧ𝑠, ∞) is known , solving 

ODEs numerically to obtain 
Ԧ𝐼𝑎𝑢𝑥(𝐷, Ԧ𝑠, i0−) is a well-studied 

mathematical problem:

Flow of auxiliary mass

Efficient to get high precision : 

ODEs, known singularity structure
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➢Simplify propagators at 𝜂 → ∞

Boundary values at 𝜂 → ∞

➢Nonzero integration regions as 𝜂 → ∞

• Linear combinations of  loop momenta: 𝒪( 𝜂 ) or 𝒪(1)

• ℓ𝐿 is the 𝒪( 𝜂 ) part of  loop momenta

• ℓ𝑆 is the 𝒪(1) part of  loop momenta

• 𝑝 is linear combination of  external momenta

• Unchange if  ℓ𝐿 = 0 and 𝜅 = 0

Beneke, Smirnov, 9711391

Smirnov, 9907471

➢Boundary FIs after simplification
1. Simpler FIs with less denominators, if  all loop momenta are 𝒪(1)

2. Vacuum integrals
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➢For boundary FIs with less denominators:
• Calculate them again use AMF method,  even simpler boundary FIs 

as input (besides vacuum integrals)

➢Typical single-mass vacuum MIs

Iterative strategy

Baikov, Chetyrkin, 1004.1153

Lee, Smirnov, Smirnov, 1108.0732

Georgoudis, et. al., 2104.08272

• Eventually, leaving only (single-mass) vacuum integrals as input

• Kinematic information can be recovered by linear algebra! 

• Much simpler to be calculated

• The same number of  loops. 

Liu, YQM, 2107.01864 
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2017-2021

FIs ≜ Linear algebra ⊕ Vacuum integrals

Input: 

No kinematics (no external legs)

The same spacetime dimension

The same number of  loops

Is this the end of  the story?

+ + +
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From p-integrals to vacuum integrals

➢A family of  single-mass vacuum integrals

• As ℓ1
2 is the only scale:

• 𝑚2: the only scale. Can choose 𝑚2 = 1

➢Propagator (p-)integrals

• 𝐿-loop single-mass vacuum integral expressed by (𝐿 − 1)-loop p-integral

Liu, YQM, 2201.11637 
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From vacuum integrals to p-integrals

➢Apply AMF method on (𝐿 − 1)-loop p-integral

1) IBP to setup 𝜂-DEs

2) Single-mass vacuum integrals no more than (𝐿 − 1) loops as input

Single-mass vacuum integrals with 𝐿 loops are determined by 

that with no more than (𝐿 − 1) loops (besides IBP)

• Boundary: 0-loop p-integrals equal 1

➢Only IBPs are needed to determine FIs!

• IBPs: linear algebra, exact (in 𝐷, Ԧ𝑠) relations between FIs

• Loop integrations are completely avoided!

Liu, YQM, 2201.11637 
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Workflow

➢The ‘FICalc’ to calculate FIs can be defined as 

(any given nonsingular 𝐷 and Ԧ𝑠):

① If  it is a 0-loop p-integral, return 1;

② If  it is a single-mass vacuum integral, express it by a p-integral, and 

call ‘FICalc’ to calculate the p-integral;

③ Otherwise:

a) Introduce 𝜂 to one propagator (if  the mass mode is not possible)

b) Setup 𝜂-DEs using IBP as input

c) Call ‘FICalc’ to calculate boundary FIs at 𝜂 → ∞

d) Numerically solve 𝜂-DEs with given BCs to obtain 𝜂 → i0−

Liu, YQM, 2201.11637 
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Since 2022

FIs ≜ Linear algebra

No other input: 

No kinematics!

No spacetime dimension!

No loops!
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Package: AMFlow

➢Download Liu, YQM, 2201.11669

• The first (method and) package that can calculate any FI (with 

any number of  loops, any 𝐷 and Ԧ𝑠) to arbitrary precision,       

given sufficient resource

Link: https://gitlab.com/multiloop-pku/amflow

➢Description

https://gitlab.com/multiloop-pku/amflow
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➢Cutting-edge problems

Examples using AMF
Liu, YQM, 2107.01864 

• Results: 16-digit precision, to 𝒪(𝜖4)

• First step of  iteration: cost most time

• All results in (a)-(f) are new, very 

challenging for all other methods!

• Highly nontrivially checked!

Time to setup DEs (CPU core hours)

• IBP reduction (bottleneck): C++

• Solve 𝜂-DEs: Mathematica. Can be 

significantly improved

Liu, YQM, 2201.11637 
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Pheno. applications of AMF

➢Wide range of  applications 

Zhang, et.al., 1810.07656

Yang, et.al., 2005.11010

Brønnum-Hansen, et. al.,  2108.09222

Baranowski, et. al., 2111.13594

Wu, et. al., 2201.11714 

Sang, et. al., 2202.11615

Tao, et. al., 2204.06385 

Armadillo, et. al., 2205.03345

Chaubey, et. al., 2205.06339

Zhang, et. al., 2205.06124 

Abreu, et. al., 2206.03848 

Bonciani, et. al., 2206.10490

…

Zhang, Sang, Zhang, 2205.06124 

• Linear propagators; Phase space integrals; 

Complex mass; QCD sum rules; Electroweak 

corrections; Quarkonia; Higgs; …

• Two-loop six external legs, massive particles

• Very challenging for other methods

➢Example

➢Two ways to use AMF
• Use AMF to calculate each phase-space point

• Use AMF to generate BCs of  Ԧ𝑠-DEs
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Other methods to calculate FIs (1)

Usyukina (1975)

Smirnov, 9905323

Laporta, 0102033

Lee, 0911.0252

➢Difference equations

• Depends on reduction and BCs

• Hard to solve difference equations: BCs, convergence

• Using Monte Carlo: time-consuming

• Hard for non-Euclidean kinematic points

➢Sector decomposition

Hepp, (1966)

Binoth, Heinrich, 0004013

• Using Monte Carlo: time-consuming

• Hard for non-planar diagrams

➢Mellin-Barnes representation
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Other methods to calculate FIs (2)

• Using Monte Carlo: time-consuming

➢Loop-Tree duality (under development) 

Catani, et. al., 0804.3170

…

Lotty: Bobadilla, 2103.09237

No real phenomenological applications yet
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Other methods to calculate FIs (3)

Kotikov, PLB (1991)

➢ (Traditional) differential equations

• Depends on reduction and BCs

Henn, 1304.1806

Chen, Yang, Zhang, …
• For some cases, 𝜖-form exists ⇒ analytical 

• The frontier: MIs for 2→3 massless processes at two loops

Onshell: Badger, et. al., 1812.11160

Chicherin, Sotnikov, 2009.07803
One offshell: Kardos, et. al., 2201.07509

• All MIs are known 

analytically to 𝒪 1

• AMF (numerical): known 

easily to 𝒪 𝜖4

• Hexa-box MIs are known 

analytically to 𝒪 1

• AMF (numerical): all MIs are 

known easily to 𝒪 𝜖4
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State-of-the-art computation

➢2→2 process with massive particles at two-

loop order: almost done

➢Very challenging (without new development) 

𝑔 + 𝑔 → 𝑡 + ҧ𝑡, 𝑔 + 𝑔 → 𝐻 + 𝐻(𝑔)

• Two-loop 𝑔 + 𝑔 → 𝐻 + 𝐻 (𝑔): complete IBP reduction cannot be achieved  

• Four-loop 𝑔 + 𝑔 → 𝐻 (NNLP in HTL):  860 days (wall time!)
Davies, Herren, Steinhauser, 1911.10214

Borowka et. al., 1604.06447

Jones, Kerner, Luisoni, 1802.00349

➢Frontier in the following decade: 

• 2→3 processes at two loops (3j/𝛾, V/H+2j 𝑡 ҧ𝑡+j, 𝑡 ҧ𝑡𝐻,…)

• 2→2 processes at three loops (2j/𝛾, V/H+j, 𝑡 ҧ𝑡, HH, …)

• 2→1 processes at four loops ( j, V/H)
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➢ Feynman integrals form a finite-dim. linear space

Summary and outlook

➢ AMF: Feynman integrals can be completely 

determined once relations in the linear space is clear

➢ Perturbative QFT in the new era: stay tune

Thank you!

➢ Results in a powerful method to calculate FIs: for the 

first time, any FI can calculated to high precision

Impossible 
2022

possible 
future

efficiency
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Infrared Divergences

➢Example: one-loop four-point integral

• eta-reg: 

• both: 

• take 𝜂 → 0 first, only 𝑓2 survives; 

• take 𝜖 → 0 first, 1/𝜖 cancels between 𝑓1 and 𝑓2

𝑠 = 10, 𝑡 = −3, 𝑚2 = 1

• dim-reg
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Perturbative QFT

1. Generate Feynman amplitudes
• Feynman diagrams and Feynman rules

• New developments: unitarity, recurrence relation, CHY, …

2. Calculate Feynman loop integrals (FIs)

3. Perform phase-space integrations
• Monte Carlo simulation with IR subtractions

• Relating to loop integrals via reverse unitarity (if  no jet)

• Amplitudes: linear combinations of  FIs with rational coefficients 
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Differential equations: example

➢Due to IBP: DEs of  MIs w.r.t. Ԧs

➢Boundary Condition
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➢To minimize #MIs: usually the propagator mode

Set up DEs w.r.t. 𝜼

Liu, YQM, 2107.01864 

➢ 𝜂-DEs for MIs in auxiliary family using IBP

Massless two-loop double-

pentagon integrals (108 MIs)

• 𝜂-DEs are easier to set up if  there are less MIs
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➢Test for various cutting-edge problems

𝜼-DEs V.S. 𝒔-DEs
Liu, YQM, 2107.01864 

• Use propagator mode: easier to set up 

𝜂-DEs for the auxiliary family than to 

set up Ԧ𝑠-DEs for the original family!

• Differentiate with 𝜂: only increase 

power of  denominator by one

• Differentiate with Ԧ𝑠: increase powers of  

both numerator and denominator by 

one. Harder to do IBP reduction

Time to setup DEs (CPU core hours)
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A five-loop example

• IBP relations are the only input!

• Terms up to 𝒪(𝜖4) agree with literature; Others are new (𝐷 = 4 − 2𝜖)

Liu, YQM, 2201.11637 

=

Lee, Smirnov, Smirnov, 1108.0732

• An arbitrary dimension D = 4/7, challenging for other methods

with about 130 significant digits 

9.7931120970486493218087959800691116464281825474654283306146947264431

516031830610056668242341877309401032293901004574319494017206091158244

70822465419388568066195037237209021119616849996640259201636321*10^7

-
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Difficulty of IBP reduction

➢Solve IBP equations

• Very large scale of  linear equations (can be billions of)

• Equations are coupled 

× Explicit solution for multi-scale problem: hard to get, expression 

can be too large

× Numerical solution at each floating phase space point : too slow

➢Cutting-edge problems

• Hundreds GB RAM

• Months of  runtime using super computer  

Laporta’s algorithm, 0102033

E.g., Laporta 1910.01248
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Solve IBP system over finite field

➢Usage of  FF is common in computer algebra

Manteuffel, Schabinger, 1406.4513

FireFly: Klappert, Lange, 1904.00009

FiniteFlow: Peraro, 1905.08019

𝑎−1 ≡ 𝑏 mod 𝑝 ֞ (𝑎𝑏) ≡ 1 mod 𝑝

7 ≡ 2 mod 5

2−1 ≡ 3 mod 5

• Solving linear system numerically and then reconstruct 

analytical solution (using Chinese remainder theorem)

• Avoid intermediate expression swell

• It is now a standard technique in FIs reduction

➢A better way to solve IBP systems
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Trim IBP system

Larsen, Zhang, et. al., 1511.01071, 

1805.01873, 2104.06866

➢Remove irrelevant FIs

• FIs with double propagator usually not show up in amplitude

• Can be removed by combining IBPs, constrained by syzygy equations

Gluza, Kajda, Kosower, 1009.0472

Schabinger, 1111.4220

➢Solving syzs using module intersection 

• No dimensional shift, module  𝑀1 from syzs:

• No double propagators, module  𝑀2 from syzs:

Very promising. No publicly available code yet

• IBPs in Baikov representation. 𝑃: Baikov polynomial; 𝑧𝑖: denominator 

• Module intersection 𝑀1 ∩ 𝑀2 calculable using algebraic geometry 

• Polynomials list (𝑎1, … , 𝑎𝑚) forms a module (generalization of  ideal)
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Module reconstruction

Liu, Ma, 1801.10523, Guan, Liu, Ma, 1912.09294

➢ IBP system as a module

• Taking all FIs as bases, coefficient vectors form a module 

(different module from previous page)

• Need to know its Gröebner basis (or simplest generators) with 

polynomial ordering: position over term, degree ordered

• Result: block-triangular form, smallest polynomial degree

• Linear independent subset of  Gröebner basis, minimal system

• Input linear system, e.g., from IBPs, trimmed IBPs, or other ways

• One method: sampling and fit. A public code will be released soon!

➢Construct simplest generators
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Application of module reconstruction

• Time =6h=(40*5s+3000*0.05s)*45+…

• Set DEs:90%; solve: 10%.

• New reduction strategy: 100× faster

➢Example: two-loop double-pentagon Liu, YQM, 2107.01864 

• Construct DEs: 3000 points 

• Block-triangular system: 40 points

➢Typically faster by 2 orders of  magnitude

Time to setup DEs (CPU core hours)
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Ways to bypass IBPs

➢ Intersection theory Frellesvig, et. al., 1901.11510, 1907.02000

Yang,..

• FIs

➢ 1/𝐷 expansion and matching

➢ 1/𝜂 expansion and matching
Guan, Liu, Ma, 1801.10523, 1912.09294

Wang, Li, Basat, 1901.09390, 2102.08225

Baikov, Chetyrkin, Kuhn, 0108197

Baikov, NPB (2003)

Baikov, 0507053

• Intersection number

m=0:


