

Belle实验上粲重子和重子的最新成果

沈成平

shencp@fudan.edu.cn

CMS energy 10.58 GeV Effective CMS 3-5 GeV

Integrated luminosity of B factories

> 1 ab⁻¹ On resonance: $\Upsilon(5S): 121 \text{ fb}^{-1}$ $\Upsilon(4S): 711 \text{ fb}^{-1}$ $\Upsilon(3S): 3 \text{ fb}^{-1}$ $\Upsilon(2S): 25 \text{ fb}^{-1}$ $\Upsilon(1S): 6 \text{ fb}^{-1}$ Off reson./scan: ~ 100 fb⁻¹

~ 550 fb⁻¹ On resonance: $Y(4S): 433 \text{ fb}^{-1}$ $Y(3S): 30 \text{ fb}^{-1}$ $Y(2S): 14 \text{ fb}^{-1}$ Off resonance: ~ 54 fb⁻¹

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Baryon production at B-factory

Baryons produced via fragmentation

- Charmed baryons rather direct
- Hyperons later stage of fragmentation

Huge statistics

B is efficiently produced via Y(4s)

Once bottom is produced, it favorably decays into charm.

Huge statistics, good quality

Measurement of $\Lambda_c^+ \rightarrow pK^-\pi^+$ decay PRD103, 072004 (2021)

A method of branching ratio with respect to CF decay $\Lambda_c^+ \rightarrow pK^-\pi^+$ (reference mode) is applied to measure the branching fractions of signal decay.

 $\frac{B(Signal)}{B(CF)} = \frac{N^{obs}(Signal)}{\epsilon^{MC}(Signal)} \times \frac{\epsilon^{MC}(CF)}{N^{obs}(CF)}$ ×10³ Events/3MeV 500 400 $\Lambda_c^+ \rightarrow p K^- \pi^+$ efficiency estimation: Dalitz method. 300 Efficiency 1200 200 4.5 4.5 1000 M²_{pk²} (GeV²/c⁴) M²_{pk} (GeV²/c⁴) 100 800 0.12 3.5 0.1 600 0.08 2.15 2.2 400 0.06 2.5 2.5 0.04 200 0.02 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 $M^{2}_{k^{-}\pi^{+}}$ (GeV²/c⁴) $M_{k^{-}\pi^{+}}^{2}$ (GeV²/c⁴)

Left: Dalitz plot from data; Right: Dalitz plot of efficiency from signal MC.

$$\varepsilon = \sum s_i / \sum_j (s_j / \varepsilon_j) = (\mathbf{14.06} \pm \mathbf{0.01}) \%.$$

First Observation of $\Lambda_c^+ o p\eta'$

JHEP03(2022)090

Reference mode

Signal mode

 $B(\Lambda_c^+ \rightarrow p\eta') = (4.73 \pm 0.82 \pm 0.47 \pm 0.24) \times 10^{-4}$

First observation of Λ_c^+ in $\Lambda_c^+ o p\eta'$

 Our result is consistent with the most theoretical calculations based on SU(3)_F symmetry.

Measurements of $\Lambda_c^+ \to \Sigma^+ \pi^0$, $\Lambda_c^+ \to \Sigma^+ \eta$, $\Lambda_c^+ \to \Sigma^+ \eta'$

Motivation

• For the charmed baryon weak decays: $B_c \rightarrow B + M$ (M is pseudoscalar or vector meson), the topological diagrams are as follows. Among them, T and C are factorizable, while C' and E_{1-3} give nonfactorizable contributions.

Naively, it is expected that the rates of $\Lambda_c^+ \to \Sigma^+ \eta$ and $\Lambda_c^+ \to \Sigma^+ \eta'$ are comparable or the former is larger than the latter. However, the branching fraction of $\Lambda_c^+ \to \Sigma^+ \eta'$ measured by BESIII was found to be larger than the $\Lambda_c^+ \to \Sigma^+ \eta$ mode. $\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta') = 2\pi$

Decay	Körner CCQM	Xu Pole	Cheng CA Pole	Ivanov CCQM	Żenczykowski Pole	Sharma CA	Zou CA	Geng SU(3)	Experiment	$S(\mathbf{i}\mathbf{c} \rightarrow \mathbf{\Delta} \mathbf{\eta})$
$ \begin{split} \Lambda_c^+ &\to \Sigma^+ \eta \\ \Lambda_c^+ &\to \Sigma^+ \eta' \end{split} $	$0.16 \\ 1.28$			$\begin{array}{c} 0.11 \\ 0.12 \end{array}$	$0.90 \\ 0.11$	$\begin{array}{c} 0.57 \\ 0.10 \end{array}$	0.74	0.32 ± 0.13 1.44 ± 0.56	$0.44 \pm 0.20 \\ 1.5 \pm 0.6$	Branchin fraction
$\begin{array}{c} \Lambda_c^+ \to \Sigma^+ \eta \\ \Lambda_c^+ \to \Sigma^+ \eta' \end{array}$	$0.33 \\ -0.45$			$\begin{array}{c} 0.55 \\ -0.05 \end{array}$	$0 \\ -0.91$	$-0.91 \\ 0.78$	-0.95	$-0.40 \pm 0.47 \\ 1.00^{+0.00}_{-0.17}$		Asymmetry parameter

• Compare the asymmetry parameters of $\Lambda_c^+ \to \Sigma^+ \pi^0$ and $\Lambda_c^+ \to \Sigma^0 \pi^+$ could test the isospin symmetry.

Measurements of $\Lambda_c^+ \to \Sigma^+ \pi^0$, $\Lambda_c^+ \to \Sigma^+ \eta$, $\Lambda_c^+ \to \Sigma^+ \eta'$ preliminary

Measurements of branching fractions of $\Lambda_c^+ \rightarrow \Sigma^+ \eta$ and $\Lambda_c^+ \rightarrow \Sigma^+ \eta'$

Method:
$$\frac{B(\Lambda_c^+ \to \Sigma^+ \eta / \Sigma^+ \eta')}{B(\Lambda_c^+ \to \Sigma^+ \pi^0)} = \frac{y(\Lambda_c^+ \to \Sigma^+ \eta / \Sigma^+ \eta')}{B_{PDG} \times y(\Lambda_c^+ \to \Sigma^+ \pi^0)} \quad (y \text{ is the efficiency-corrected yield}).$$

 $\frac{B(\Lambda_c^+ \to \Sigma^+ \eta)}{B(\Lambda_c^+ \to \Sigma^+ \pi^0)} = 0.25 \pm 0.03 \pm 0.01; \qquad B(\Lambda_c^+ \to \Sigma^+ \eta) = (3.14 \pm 0.35 \pm 0.11 \pm 0.25) \times 10^{-3}$

 $\frac{B(\Lambda_c^+ \to \Sigma^+ \eta')}{B(\Lambda_c^+ \to \Sigma^+ \pi^0)} = 0.33 \pm 0.06 \pm 0.02; \qquad B(\Lambda_c^+ \to \Sigma^+ \eta') = (4.16 \pm 0.75 \pm 0.21 \pm 0.33) \times 10^{-3}$

Most precise result to date.

Measurements of $\Lambda_c^+ \to \Sigma^+ \pi^0$, $\Lambda_c^+ \to \Sigma^+ \eta$, $\Lambda_c^+ \to \Sigma^+ \eta'$

• Measurements of asymmetry parameters of $\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$, $\Sigma^+ \eta$, and $\Sigma^+ \eta'$

The differential decay rate depends on the asymmetry parameter α_{Σ^+X} as: $\frac{dN}{dcos\theta_{\Sigma^+}} \propto 1 + \alpha_{\Sigma^+X}\alpha_{p\pi^0}cos\theta_{\Sigma^+}$ NEW

preliminary

 θ_{Σ^+} is the angle between the proton momentum vector and the opposite of the Λ_c^+ momentum vector in the Σ^+ rest frame; $\alpha_{p\pi^0} = -0.982 \pm 0.014$ from world average value.

• $\alpha_{\Sigma^+\pi^0} = -0.48 \pm 0.02 \pm 0.02$

- > agrees with the world average value: -0.55 ± 0.11 .
- with much improved precision.
- → The consistency with $\alpha_{\Sigma^0 \pi^+} = -0.463 \pm 0.016 \pm 0.008$ indicates no isospin symmetry broken.
- $\alpha_{\Sigma^+\eta} = -0.99 \pm 0.03 \pm 0.05$ and $\alpha_{\Sigma^+\eta} = -0.46 \pm 0.06 \pm 0.03$
 - measured for the first time.

First search for the weak radiative decays $\Lambda_c^+ \rightarrow \Sigma^+ \gamma$ and $\Xi_c^0 \rightarrow \Xi^0 \gamma$

Motivation:

- Weak radiative decays of charmed hadrons are dominated by the long-range nonperturbative processes that can enhance the branching fractions up to 10⁻⁴, whereas short-range interactions are predicted to yield rates at the level of 10⁻⁸[1,2]
- → At the Cabibbo-favored level, there are two decay modes for the weak radiative decays of anti-triplet charmed baryons induced from $cd \rightarrow us\gamma$, i.e., $\Lambda_c^+ \rightarrow \Sigma^+ \gamma$ and $\Xi_c^0 \rightarrow \Xi^0 \gamma$ decays.
- ➤ The theoretical estimates of branching fractions cover ranges of (4.5 29.1) × 10⁻⁵ and (3.0 19.5) × 10⁻⁵ for Λ⁺_c → Σ⁺γ and Ξ⁰_c → Ξ⁰γ decays, respectively [3-6].

FIG. 1: The W-exchange diagrams accompanied by a photon emission from the external s quark for (a) $\Lambda_c^+ \to \Sigma^+ \gamma$ and (b) $\Xi_c^0 \to \Xi^0 \gamma$ decays as examples.

In this analysis, we perform the first search the weak radiative decays Λ⁺_c → Σ⁺γ and Ξ⁰_c → Ξ⁰γ using 980 fb⁻¹ data collected by Belle.
[1]PRD 52, 6383 (1995); [2] PLB 382, 415 (1996); [3] PRD 28, 2176 (1983); [4] PRD 47, 2858 (1993);
[5] PRD 51, 1199 (1995); [6] arXiv:2109.01216.

First search for the weak radiative decays $\Lambda_c^+ \rightarrow \Sigma^+ \gamma \text{ and } \Xi_c^0 \rightarrow \Xi^0 \gamma$ arXiv:2206.12517

➤ There are no evident Λ⁺_c → Σ⁺γ or Ξ⁰_c → Ξ⁰γ signals. The signal significance of Λ⁺_c → Σ⁺γ decay is only 2.2σ, after considering the systematic uncertainty.

➤ Taking $\Lambda_c^+ \rightarrow pK^-\pi^+$ and $\Xi_c^0 \rightarrow \Xi^-\pi^+$ as normalization channels, the upper limits at 90% confidence level (C.L.) on the ratios of branching fractions are

$$\frac{\operatorname{Br}(\Lambda_c^+ \to \Sigma^+ \gamma)}{\operatorname{Br}(\Lambda_c^+ \to \mathrm{pK}^- \pi^+)} < 3.99 \times 10^{-3} \qquad \frac{\operatorname{Br}(\Xi_c^0 \to \Xi^0 \gamma)}{\operatorname{Br}(\Xi_c^0 \to \Xi^- \pi^+)} < 1.15 \times 10^{-2}$$

➤ The upper limits at 90% C.L. on the absolute branching fractions are determined to be $Br(\Lambda_c^+ \to \Sigma^+ \gamma) < 2.55 \times 10^{-4} \quad Br(\Xi_c^0 \to \Xi^0 \gamma) < 1.73 \times 10^{-4}$

Measurements of $\mathcal{B}(\Omega_c^0 \to \Omega^- l^+ \nu)$ and $\mathcal{B}(\Xi_c^0 \to \Xi^- l \nu)$

Semileptonic decays of charmed baryons:

- Ideal test of QCD in transition region of (non-)perturbative.
- The cleanest processes among charm decays
- Verify lepton flavor universality (LFU).

Experimentally:

 $\mathcal{B}(\Lambda_c^+ \to \Lambda \ e^+ \nu_e) = (3.6 \pm 0.4)\% \text{ PRL 115, 221805(2015)}$ $\mathcal{B}(\Lambda_c^+ \to \Lambda \ \mu^+ \nu_e) = (3.5 \pm 0.4)\% \text{ PLB 767, 42 (2017)}$

large uncertainty

- •BESIII measured the $\mathcal{B}(\Lambda_c^+ \to \Lambda l^+ \nu)$
- •ARGUS and CLEOII measured $\mathcal{B}(\Xi_c \to \Xi l^+ \nu)$

•CLEO measured $\mathcal{B}(\Omega_c^0 \to \Omega^- e^+ \nu)$

For Belle measurements, please see Yubo Li's report at 16:20 on July 29.

Measurements of $Br(\Xi_c^0 \to \Lambda_c^+ \pi^-)$

➤ There is a special class of weak decay, the heavy-flavor-conserving nonleptonic decays, in charmed baryons containing both an *s* and a *c* quark, that proceeds via the decay of the s quark, i.e. $\Xi_c^0 \to \Lambda_c^+ \pi^-$. The decay width of $\Xi_c^0 \to \Lambda_c^+ \pi^-$ is based on the size of the *s* quark decay amplitude of $s \to u(\bar{u}d)$ and the weak scattering amplitude $cs \to dc$.

The Feynman diagrams of the (a) $s \to u(\bar{u}d)$ and (b) $cs \to dc$ modes of $\Xi_c^0 \to \Lambda_c^+ \pi^-$.

→ The branching fraction of $\Xi_c^0 \to \Lambda_c^+ \pi^-$ have been predicted based on the heavy quark expansion, and the heavy quark symmetry(HQS).

Mode	[Phys. Rev. D 46,	[Phys. Rev. D 100,	[Phys. Lett. B 757, 330	[Phys. Lett. B 750, 653
	5060 (1992)]	114030 (2019)]	(2016)]	(2015)]
$\Xi_c^0\to\Lambda_c^+\pi^-$	0.39×10^{-3}	$> (0.25 \pm 0.15) \times 10^{-3}$	$(1.34 \pm 0.53) \times 10^{-3}$	$< 0.39 \times 10^{-3}$

Measurements of $Br(\Xi_c^0 \to \Lambda_c^+ \pi^-)$

We present the measurement of branching fractions of Ξ⁰_c → Λ⁺_cπ⁻ using all Belle data.
arXiv:2206.08527

 $\frac{Br(\Xi_c^0 \to \Lambda_c^+ \pi^-)}{Br(\Xi_c^0 \to \Xi^- \pi^+)} = (3.8 \pm 0.4 \text{ (stat.)} \pm 0.03 \text{ (syst.)} \pm 2.0 \text{ (ref.)}) \times 10^{-3}$

 $Br(\Xi_c^0 \to \Lambda_c^+ \pi^-) = (6.8 \pm 0.6 \pm 0.6 \pm 2.0) \times 10^{-3}$

The result is consistent with previous measurement by LHCb experiment and recent theoretical calculation, and larger than the previous theoretical predictions.

Evidence of a new Λ_{c}^{+} excited state ?

Evidence of a new Λ_{c}^{+} excited state ?

● $\Lambda_c(2940) \rightarrow \Sigma_c(2455)\pi$: 是目前最高的 Λ_c 激发态 ● LHCb测量支持J^P = $\frac{3}{2}$, 但不排除其他可能值 JHEP 05, 030 (2017). ● $\Lambda_c(2940)$ 质量低于传统夸克模型预期

- ●观测道明显的 B^0 → Σ_c (2455) πp 信号
- ●测得衰变分支比与此前测量一致,精度提升较大

B衰变末态	产额	分支比(10 ⁻⁴)	PDG (10 ⁻⁴)
$\Sigma_c(2455)^0\pi\overline{p}$	767 <u>+</u> 44	$1.09 \pm 0.06 \pm 0.07$	1.08 ± 0.16
$\Sigma_c(2455)^{++}\pi\overline{p}$	1213 ± 73	$1.84 \pm 0.11 \pm 0.12$	1.88 ± 0.24

Evidence of a new Λ_{c}^{+} excited state ?

 Λ_c 激发态的寻找:

arXiv:2206.08822

 • 在Σ_c(2455)π不变质量谱上,观测到一个结构,质量宽度测得: *m* = (2913.8 ± 5.6 + 3.7) MeV/c² *Γ* = (51.8 ± 20.0 ± 18.8) MeV

 • 统计显著性6.1σ,考虑各种系统误差后,最保守的显著性4.2σ

●其 J^p 倾向于 $\frac{1}{2}$,即:此结构符合 $\Lambda_c(\frac{1}{2}, 2P)$,命名为 $\Lambda_c(2910)$ ●对2P态: $\Lambda_c(2910)$ 和 $\Lambda_c(2940)$ 需要进一步实验测量和理论解释

- The Ω^- , with three strange quarks, is the strangest baryon.
- Its excited states have proved difficult to find.
- It is surprising that the mass gap between the ground state and its excitations is so large.

The observations/evidences for these states were reported four decades ago.

Observation of the $\Omega(2012)^{-1}$

Results & Summary

[PRL 121, 052003 (2018)]

Data	Mode	Mass (MeV/ c^2)	Yield	$\Gamma(MeV)$	χ^2 /d.o.f.	n_{σ}
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-, \Xi^- K^0_S$	$\frac{2}{3}$ 2012.4 ± 0.7	$242 \pm 48, \ 279 \pm 71$	$6.4^{+2.5}_{-2.0}$	227/230	8.3
	(simultaneous)				
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-$	2012.6 ± 0.8	239 ± 53	6.1 ± 2.6	115/114	6.9
$\Upsilon(1S,2S,3S)$	$\Xi^- K_S^0$	2012.0 ± 1.1	286 ± 87	6.8 ± 3.3	101/114	4.4
Other	$\Xi^0 K^-$	2012.4 (Fixed)	209 ± 63	6.4 (Fixed)	102/116	3.4
Other	$\Xi^- K_S^0$	2012.4 (Fixed)	153 ± 89	6.4 (Fixed)	133/116	1.7

$$\mathcal{R} = \frac{\mathcal{B}(\Omega(2012)^{-} \to \Xi^{0} \mathrm{K}^{-})}{\mathcal{B}(\Omega(2012)^{-} \to \Xi^{-} \overline{\mathrm{K}}^{0})} = 1.2 \pm 0.3$$

The $\Omega(2012)^-$ was found for the first time at Belle in decays of the narrow resonances $\Upsilon(1S), \Upsilon(2S), \text{ and } \Upsilon(3S).$

The rather narrow width of the $\Omega(2012)^{-1}$ implies that the $J^{P} = \frac{2}{3}^{-1}$ identification is more likely.

Theoretical interpretations for the $\Omega(2012)^{-1}$

The $\Omega(2012)^-$ has been interpreted as a standard baryon or a $\Xi(1530)\overline{K}$ molecule.

Interpretations	References	Comments
Standard baryon	PRD 98, 034004 (2018), EPJC 78, 894 (2018), PRD 98, 114023 (2018), PRD 101, 016002 (2020), PRD 105, 094006 (2022), PRC 103, 025202 (2021), PRD 98, 014031 (2018), PLB 792, 315 (2019), arXiv: 2203.04458 (2022), arXiv: 2201.10427 (2022)	The $\Omega(2012)^-$ decays dominantly to $\Xi \overline{K}$.
$\Xi(1530)\overline{K}$ molecule	PRD 98, 054009 (2018), EPJC 78, 857 (2018), PRD 98, 076012 (2018), JPG 48, 025001 (2021), PRD 98, 056013 (2018), PRD 101, 094016 (2020), EPJC 80, 361 (2020), PRD 102, 074025 (2020), arXiv: 2204.13396 (2022),	The $\Omega(2012)^-$ decays equally to $\Xi \overline{K}$ and $\Xi(1530)\overline{K}$. Or the $\Xi(1530)\overline{K}$ decay mode is dominant.

The three-body decay in the $\Xi(1530)\overline{K}$ molecule picture:

Measurement of the branching fraction for $\Omega(2012)^- \rightarrow \Xi(1530)\overline{K}$ is crucial to distinguish the nature of the $\Omega(2012)$!

Search for $\Omega(2012)^- \rightarrow \Xi(1530)\overline{K} \rightarrow \Xi\pi\overline{K}$

The previous analysis [PRD 100, 032006 (2019)]:

However, we realized that

- (1) the requirement of M($\Xi\pi$) includes large non- $\Xi(1530)$ decay backgrounds;
- (2) do NOT consider a three-body phase space in M($\Xi\pi K$), which increases sharply due to the unstable $\Xi(1530)$ constituent.

In contrast to the previous study [PRD 100, 032006 (2019)]: 1. $M(\Xi\pi) < 1.517 \text{ GeV}$

2. parameterize the $\Omega(2012)^-$ signal shape with a Flatté-like function with a threebody phase space included

The black solid histogram shows the expected lineshape of the $\Xi(1530)$.

• The number of signal-MC events is scaled to three times the yield of $\Omega(2012)^- \rightarrow \Xi^- \pi^+ K^-$ in data to make it more visible.

The Flatté-like function [PRD 81, 094028 (2010)]

$$T_n(M) = \frac{g_n \kappa_n(M_n)}{|M_n - m_{\Omega(2012)} + \frac{1}{2} \sum_{j=2,3} g_j [\kappa_j(M_j) + ik_j(M_j)]|^2}$$

a k (M)

- g_n is the effective coupling of to the *n*-body final state
- k_n and κ_n parameterize the real and imaginary parts of the $\Omega(2012)^-$ self-energy

Revisit $\Omega(2012)^- \rightarrow \Xi(1530)\overline{K} \rightarrow \Xi\pi\overline{K}$

arXiv:2207.03090

Observation of $\Omega(2012)^- \rightarrow \Xi(1530)\overline{K}$ and measurement of the couplings of $\Omega(2012)^- \rightarrow \Xi(1530)\overline{K}$ and $\Xi\overline{K}$

We fit simultaneously to the binned $\Xi^-\pi^+K^-$, Ξ^0K^- , and $\Xi^-K_S^0$ mass distributions from Y(1S,2S,3S) data samples.

70 p 200 500 $N^{sig} = 263 + 53$ 60 E Events/3 MeV/c² Events/3 MeV/c² Events/3 MeV/c² 150 50 5.2σ 40 30 200 20 50 100 10 95 2.05 2.1 2.15 2.2 1.9 1.95 1.95 2 2.05 2.1 2.15 22 2 2.05 2.1 2.15 2.2 $M(\Xi^{\pi+}K)$ (GeV/c²) $M(\Xi^0 K^{-})$ (GeV/c²) $M(\Xi K_{s}^{0})$ (GeV/c²)

The mass and effective couplings :

$\Omega(2012)^{-}$ mass	(2012.5±0.7±0.5) MeV
The coupling to $\Xi \overline{K}$	$(1.7 \pm 0.3 \pm 0.3) \times 10^{-2}$
The coupling to $\Xi(1530)\overline{K}$	$(41.1 \pm 35.8 \pm 6.0) \times 10^{-2}$

Our result is consistent with the molecular model of $\Omega(2012)^-$, which predicts comparable rates for $\Omega(2012)^-$ decay to $\Xi(1530)\overline{K}$ and $\Xi\overline{K}$.

The ratio of the branching fraction for the three-body to two-body decays:

$$\mathcal{R}_{\Xi\bar{K}}^{\Xi\pi\bar{K}} = \frac{\mathcal{B}(\Omega(2012)^- \to \Xi(1530)\bar{K} \to \Xi\pi\bar{K})}{\mathcal{B}(\Omega(2012)^- \to \Xi\bar{K})}$$

 0.97 ± 0.24 (stat.) ± 0.07 (syst.)

- Although Belle has stopped data taking for >10 years ago, we are still producing exciting results [China group has made great contributions].
- Belle II started data taking on 25 March 2019 with its full detector.
- The Belle II experiment at SuperKEKB aims to find New Physics beyond the SM with ultimate precision measurement (a few %, typically) of heavy flavor decays.
- Belle II is performing as expected, and obtained early physics results.

26

感谢您的批评指正 _{沈成平} shencp@fudan.edu.cn

BackUp: Excited states:

By John Yelton

https://hflav-eos.web.cern.ch/hflav-

eos/charm/baryons/Excited_Apr19/baryons_April19.html

Charmed Barvon	Mode	Mass	Natural Width	J^p	Status and Comments
Excited State	mode	(MeV/c^2)	(MeV/c^2)	0	
$\Lambda_{c}(2595)^{+}$	$\Lambda_c^+\pi^+\pi^-, \Sigma_c\pi$	2592.25 ± 0.28	$2.59 \pm 0.30 \pm 0.47$	$1/2^{-}$	well established, most precise mmeasurement by CDF 1
$A_c(2625)^+$	$\Lambda_c^+\pi^+\pi^-$	2628.11 ± 0.19	< 1.9	3/2-	well established, most precise measurements by CDF 1
$\Lambda_{c}(2765)^{+}$	$\Lambda_c^+\pi^+\pi^-, \Sigma_c\pi$	2766.6 ± 2.4	50	??	discovered by CLEO, seen by Belle, but parameters not measured 2
$A_{c}(2880)^{+}$	$\Lambda^+_{\alpha}\pi^+\pi^-, \Sigma_c\pi,$	2881.53 ± 0.35	5.8 ± 1.1	5/2+	well established and seen in more than one mode 24
	$\Sigma_c(2520)\pi, D^0p$			(experimental evidence)	
$\Lambda_{c}(2940)^{+}$	$D^0p, \Sigma_c\pi$	$2939.3^{+1.4}_{-1.5}$	17^{+8}_{-6}	??	Seen by both BaBar 4 and BelleMizuk
$\Sigma_c(2455)^{++}$	$\Lambda_c^+\pi^+$	167.510 ± 0.17	$1.89\pm^{+0.09}_{-0.18}$	1/2+	well established, most precise measurements by Belle 5
$\Sigma_{c}(2455)^{+}$	$\Lambda_c^+\pi^+$	166.4 ± 0.4	< 4.6 @ 90% CL	$1/2^+$	well established, but parameters not measured precisely
$\Sigma_{c}(2455)^{0}$	$\Lambda_c^+\pi^+$	167.29 ± 0.17	$1.83^{+0.11}_{-0.19}$	$1/2^+$	well established, most precise measurements by Belle 5
$\Sigma_c(2520)^{++}$	$\Lambda_c^+ \pi^+$	$231.95^{+0.17}_{-0.12}$	$14.78\pm +0.30_{-0.40}$	3/2+	well etablished, most precise measurements by Belle 5
$\Sigma_{c}(2520)^{+}$	$\Lambda_c^+\pi^+$	231.0 ± 2.3	< 17 @ 90% CL	$3/2^+$	fairly well established, awaits precise measurement
$\Sigma_{c}(2520)^{0}$	$\Lambda_c^+\pi^+$	$232.02\substack{+0.15\\-0.14}$	$15.3^{+0.4}_{-0.5}$	$3/2^+$	well established, most precise measurements by Belle 5
$\Sigma_c(2800)^{++}$	$\Lambda_c^+\pi^+$	514^{+4}_{-6}	75^{+18+12}_{-13-11}	tentatively identified	observed by Belle 6 - should be confirmed
$\Sigma_{c}(2800)^{+}$	$\Lambda_c^+ \pi^0$	505^{+15}_{-5}	62^{+37+52}_{-23-38}	as members of the predicted	
$\Sigma_{c}(2800)^{0}$	$\Lambda_c^+\pi^-$	519^{+5}_{-7}	72^{+22}_{-15}	$\Sigma_{c2} 3/2^{-}$ isospin triplet?	same states as that below?
	$\Lambda_c^+\pi^-$	$560\pm8\pm10$	86^{+33}_{-22}		seen by Babar 7 in resonant substructure of B decays - needs confirmation
$\Xi_c^{\prime+}$	$\Xi_c^+\gamma$	110.5 ± 0.4		1/2+	well established
$\Xi_c^{\prime 0}$	$\Xi_c^0 \gamma$	108.3 ± 0.4		$1/2^+$	well established
$\Xi_c(2645)^+$	$\Xi_c^0 \pi^+$	178.5 ± 0.1	2.1 ± 0.2	$3/2^+$	well established, widths recently measured by Belle 8
$\Xi_c(2645)^0$	$\Xi_c^+\pi^-$	174.7 ± 0.1	2.4 ± 0.2	$3/2^+$	
$\Xi_c(2790)^+$	$\Xi_{c}^{\prime 0}\pi^{+}$	320.7 ± 0.5	9 ± 1	1/2-	well established, widths recently measured by Belle 8
$\Xi_c(2790)^0$	$\Xi_c^{\prime +}\pi^-$	323.8 ± 0.5	10 ± 1	$1/2^{-}$	
$\Xi_c(2815)^+$	$\Xi_c(2645)^0\pi^+$	348.8 ± 0.1	2.43 ± 0.23	3/2-	well established, widths recently measured by Belle 8
$\Xi_c(2815)^0$	$\Xi_{c}(2645)^{+}\pi^{-}$	349.4 ± 0.1	2.54 ± 0.23	$3/2^{-}$	
$\Xi_c(2930)^+$	$\Lambda_c^+ K_S^0$	$2942.3 \pm 4.4 \pm 1.5$	$14.8 \pm 8.8 \pm 2.5$??	"evidence" recently reported by Belle 9
$\Xi_c(2930)^0$	$\Lambda_c^+ K^-$	$2928.9 \pm 3.0 \substack{+0.9 \\ -12.0}$	$19.5 \pm 8.4^{+5.9}_{-7.9}$??	originally reported by BaBar 11, confirmed by Belle 10
$\Xi_c(2970)^+$	$\Lambda_c^+ K^- \pi^+, \Sigma_c^{++} K^-, \Xi_c(2645)^0 \pi^+$	2967.2 ± 0.8	21 ± 3	??	well established, but parameters in different modes and experiments differ
$\Xi_c(2970)^0$	$arepsilon_c(2645)^+\pi^-$	2970.4 ± 0.8	28 ± 3	??	well established, but parameters in different modes and experiments differ
$\Xi_c(3055)^+$	$\Sigma_c^{++}K^-, \Lambda D$	3055.7 ± 0.4	8.0 ± 1.9	??	seen by Belle and BaBar 12 14
$\Xi_c(3055)^0$	ΛD	3059.0 ± 0.8	6.2 ± 2.4	??	newly observed by Belle 14
$\Xi_c(3080)^+$	$\Lambda_{c}^{+}K^{-}\pi^{+}, \Sigma_{c}^{++}K^{-}, \Sigma_{c}(2520)^{++}K^{-}, \Lambda D$	3077.8 ± 0.3	3.6 ± 0.7	??	seen by Belle and BaBar 12 15
$\Xi_c(3080)^0$	$\Lambda_{c}^{+}K_{S}^{0}\pi^{-}, \Sigma_{c}^{0}K_{S}^{0}, \Sigma_{c}(2520)^{0}K_{S}^{0}$	3079.9 ± 1.0	5.6 ± 2.2	??	seen by Belle and BaBar 12 14 15
$\Omega_{c}(2770)^{0}$	$\Omega_c^0 \gamma$	2765.9 ± 2.0	0	3/2+	seen by BaBar 16 and Belle 17
$\Omega_c(3000)^0$	$\Xi_c^+ K^-$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$??	LHĊb 18
$\Omega_{c}(3050)^{0}$	$\Xi_c^+ K^-$	$3050.2 \pm 0.1 \pm 0.1 \pm 0.1 \substack{+0.3 \\ -0.5}$	< 1.2,95%CL	??	LHCb 18
$\Omega_{c}(3066)^{0}$	$\Xi_c^+ K^-$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$??	LHCb 18
$\Omega_{c}(3090)^{0}$	$\Xi_c^+ K^-$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$??	LHCb 18
$\Omega_{c}(3119)^{0}$	$\Xi_c^+ K^-$	$3119.1 \pm 0.3 \pm 0.9 \substack{+0.3 \\ -0.5}$	$1.1\pm0.8\pm0.4$??	LHCb 18
$\Omega_{c}(3118)^{0}$	$\Xi_c^+ K^-$	$3188 \pm 5 \pm 13$	$60\pm15\pm11$??	Reported by LHCb [18], not clear if it is several resonances

BackUp: Current charmed baryon status

Λ_c^+	$1/2^+$	****
$arLambda_c(2595)^+$	$1/2^-$	***
$arLambda_c(2625)^+$	$3/2^-$	***
$arLambda_c(2765)^+$ or $arLambda_c(2765)$		*
$arLambda_c(2860)^+$	$3/2^+$	***
$arLambda_c(2880)^+$	$5/2^+$	***
$arLambda_c(2940)^+$	$3/2^-$	***
$\Sigma_c(2455)$	$1/2^+$	****
$\Sigma_c(2520)$	$3/2^+$	***
$\Sigma_c(2800)$		***
Ξ_c^+	$1/2^+$	***
Ξ_c^0	$1/2^+$	****
$\Xi_c^{\prime+}$	$1/2^+$	***
$ec{\Xi}_{c}^{\prime 0}$	$1/2^+$	***
$arepsilon_c(2645)$	$3/2^+$	***
$\Xi_c(2790)$	$1/2^{-}$	***
$\Xi_c(2815)$	$3/2^-$	***
$arepsilon_c(2930)$		**
$arepsilon_c(2970)$		***
was $arepsilon_c(2980)$		
$arepsilon_c(3055)$		***
$arepsilon_c(3080)$		***
$arepsilon_c(3123)$		*
$arOmega_c^0$	$1/2^{+}$	***
${\it \Omega_c(2770)}^0$	$3/2^+$	***
$arOmega_c(3000)^0$		***
$arOmega_c(3050)^0$		***
$arOmega_c(3065)^0$		***
$\Omega_c(3090)^0$		***
$\Omega_c(3120)^0$		***
- ()		

****: Existence is certain, properties fairly explored.

- ***:Existence is very likely or certain, further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.
 - **:Evidence of existence is only fair.
 - *:Evidence of existence is poor.

Only Λ_c^+ , Ξ_c^0 and $\Sigma_c(2455)$ in **** status

 k_3 and κ_3 are

PRD 81, 094028 (2010)

$$k_{3}(M) = \frac{g_{l}}{2\pi\mu_{p}} \int_{0}^{\sqrt{2\mu_{p}q(M)}} p^{2}dp \times \frac{(q(M) - \frac{p^{2}}{2\mu_{p}})^{(2l+1)/2}}{(M_{R} - q(M) + \frac{p^{2}}{2\mu_{p}})^{2} + \frac{g_{l}^{2}}{4}(q(M) - \frac{p^{2}}{2\mu_{p}})^{2l+1}},$$

$$\kappa_{3}(M) = \kappa(q(M)) + \kappa'(q(M)) - \kappa(q(m)) - \kappa'(q(m)),$$

$$\kappa(M) = \frac{1}{\pi\mu_{p}} \int_{0}^{\infty} p^{2}dp \times \frac{M_{R} - q(M) + \frac{p^{2}}{2\mu_{p}}}{(M_{R} - q(M) + \frac{p^{2}}{2\mu_{p}})^{2} + \frac{g_{l}^{2}}{4}(q(M) - \frac{p^{2}}{2\mu_{p}})^{2l+1}},$$

$$\kappa'(M) = -\frac{g_l}{2\pi\mu_p} \int_{\sqrt{2\mu_p q(M)}}^{\infty} p^2 dp \times \frac{\left(\frac{p^2}{2\mu_p} - q(M)\right)^{(2l+1)/2}}{(M_R - q(M) + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4}(q(M) - \frac{p^2}{2\mu_p})^{2l+1}}$$

Here, $q(M) = M(\Xi\pi\overline{K}) - m_{\Xi} - m_{\pi} - m_{K}, q(m) = m_{\Omega(2012)} - m_{\Xi} - m_{\pi} - m_{K}, \mu_{p} = \frac{m_{K}(m_{\pi} + m_{\Xi})}{m_{\Xi} + m_{\pi} + m_{K}}$ is the reduced mass of the $\Xi\overline{K}$ system, $M_{R} = m_{\Xi(1530)} - m_{\Xi} - m_{\pi}$ is the mass of the unstable constituent, the coupling g_{I} is $\Gamma_{R}/E_{R}^{I+1/2}$ (Γ_{R} is the width of $\Xi(1530)$), the orbital angular momentum of \overline{K} in the $\Xi(1530)\overline{K}$ system is I = I, and p is the \overline{K} momentum in the $\Xi(1530)\overline{K}$ center-of-mass system. The functions k_{2} and κ_{2} are identical to k_{3} and κ_{3} with $\Xi(1530)$ replaced with Ξ , followed by $\Xi \rightarrow \Lambda \pi$.

Measurement of $\mathcal{B}(\Xi_c^0 \to \Xi^- l \nu)$

Y. B. Li. *C.P.Shen et al., PRL 127, 121803 (2021)

Fit component:

- Signal : True signal histogram
- BKG1: Ξ^- sideband
- BKG2: $\Xi^- \ell^- \Xi^-$ sideband
- BKG3: $\Xi_c^0 \to \Xi^- \pi^+ \ell \nu$ histogram
- BKG5: $\Xi_c^0 \rightarrow \Xi^- \pi + h$ histogram
- BKG4: Bkg histogram from B decay

data-driven method for bkg extraction

 $\mathcal{B}\left(\mathcal{Z}_c^0 \to \mathcal{Z}^- \ e^+ \nu_e\right) = (1.31 \pm 0.39)\%$

Previous: $(2.34 \pm 1.59)\%$

$$\mathcal{B}(\mathcal{Z}_c^0 \to \mathcal{Z}^- \,\mu^+ \nu_\mu) = (1.27 \pm 0.39)\%$$

Consistent with LFU

Measurement of $\mathcal{B}(\Omega_c^0 \to \Omega^- l^+ \nu)$

Y. B. Li, *C.P.Shen et al., Phys. Rev. D 105, L091101 (2022)

 $\Omega_c^0 \to \Omega^- \pi^+$: Fragmentation Function extraction

Peterson's fragmentation function

$$\frac{dN}{dx_p} \approx \frac{1}{x_p} \cdot \frac{1}{\left(1 - \frac{1}{x_p} - \frac{\epsilon_p}{1 - x_p}\right)^2}$$

• data with $p^*_{\Omega\ell(\pi)}/p^*_{\max}$ >0.5 used in fit • $\epsilon_p = 0.1160 \pm 0.014$

 $\Omega_c^0 \to \Omega^- \mu^+ \nu$: signal extraction Similar data-driven method used in $\Xi_c^0 \to \Xi^- l \nu$

 $\frac{\mathcal{B}(\Omega_c^0 \to \Omega^- e^+ \nu)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = 1.98 \pm 0.15$ Previous: 2.4 ± 1.2 $\frac{\mathcal{B}(\Omega_c^0 \to \Omega^- \mu^+ \nu)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = 1.94 \pm 0.21$

Consistent with LFU