

Amplitude analysis and its usage in flavor physics

Wenbin Qian (钱文斌) University of Chinese Academy of Sciences (中国科学院大学)

第四届重味物理与量子色动力学研讨会 2022/07/28

Outline

- Introduction
- A general amplitude analysis tool: TF-PWA
- First observation of a double charged tetraquark state and its neutral partner
- First observation of a resonant structure near $D_s^+ D_s^-$ threshold
- CP violation studies in $B^+ \to \pi^+ \pi^+ \pi^-$
- Conclusion

Introduction

- Amplitude analysis widely used in flavor physics
- Simplest case: Dalitz plot, a spin 0 particle decays to three spin 0 particles

D→K_s $\pi^+\pi^-$ as an example: green & blue: K*(892) vector cyan & magenta: K₂*(1430) tensor yellow: $\rho(770)$ vector red: f₀(980) scalar

- Resonances with different spins behave differently
- Separate them and extract information according to interference between them

Extract resonant information

- Discovery exotic states and measure their properties
- Understanding CP violation effects on the phase space
- Usually Isobar model:

- Amplitude analyses very complicated: main limitations to start an analysis
- Enormous data from BESIII, LHCb and other flavor physics experiments: massive CPU time needed to perform analyses
- A general PWA framework using modern acceleration technology (such as GPU, AD,...)
 eagerly needed
- We have developed a new framework using TensorFlow

A general and user-friendly partial wave analysis framework

Hao Cai¹, Chen Chen⁵, Yi Jiang², Pei-Rong Li³, Yin-Rui Liu², Xiao-Rui Lyu², Rong-Gang Ping⁴, Wenbin Qian², Mengzhen Wang⁵, Zi-Yi Wang², Liming Zhang⁵, Yang-Heng Zheng² ¹WHU, ²UCAS, ³LZU, ⁴IHEP, ⁵THU

- Joint efforts + experience on previous analyses + very good students
- Cross-checks performed with several independent fitters developed previously for dedicated analyses: e.g. $Z(4430)^+$ and pentaquark search, $B^0 \to \overline{D^0}\pi^+\pi^-$ analysis etc.

Features

• Based on Tensor-Flow v2

• Fast

- GPU based
- Vectorized calculation
- Automatic differentiation

• General

- Custom model available
- Simple configuration file

• Easy to use

2022/07/28

- Automatics process
- All necessary functions implemented
- Open access and well supported

https://gitlab.com/jiangyi15/tf-pwa

Framework

Benchmarks

CPU: <u>i7-9750H@2.6</u> Hz with 12 cores GPU: Nvidia 1660 Ti, a cheap GPU

Test based on simple MC (20000) sample of a simple amplitude model of $e^+e^- \rightarrow R_1(1^+)\pi, R_1 \rightarrow D^*D^*$

Both based on TF-PWA

process	CPU (ms)	GPU (ms)	Ratio
$N = \int A ^2 d\Phi$	573	53	~11 X 12 = 132
N with $\frac{\partial N}{\partial \vartheta}$	1122	117	~9.5 X 12 = 114

Almost a factor of 100 times faster for GPU than single CPU core. Automatic differentiation cost the same time as normal evaluation, faster with increase of parameters

Functions implemented

- Toy studies
- Plotting
- Fit fractions, interference fractions Resolution
- Simultaneous fit between different Simple symbolic formula datasets
- Parity conversation

- Final states with identical particles
- Amplitude factorization

- Model independent fit
- Error propagation
- Gaussian constraints on parameters
- 2D chi2 test

2022/07/28

• CP violation fit

Used in many LHCb/BESIII analyses, including those discussed below

Observation of a double-charged tetra-quark states and its isospin partner

LHCb-PAPER-2022-026 LHCb-PAPER-2022-027

Feynman diagrams

• Two decays considered: $B^0 \to \overline{D^0} D_s^+ \pi^-$, $B^+ \to D^- D_s^+ \pi^+$

• Connected by isospin relationship in all aspects

Signal yields

• Two decays considered: $B^0 \to \overline{D^0} D_s^+ \pi^-$, $B^+ \to D^- D_s^+ \pi^+$

$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

$D^- \rightarrow K^- \pi^+ \pi^+$

• Very pure samples, ideal for amplitude analysis

Preliminary

- $\sim 4000 B^0$ signals with a purity of $\sim 90\%$;
- $\sim 3750 B^+$ signals with a purity of $\sim 95\%$

First impression on Dalitz plot

Preliminary

- Very similar distributions over Dalitz plot
- Clear accumulation of events on both channels around 2.9 GeV of $m(D_s^+\pi^-)$ and $m(D_s^+\pi^+)$
- $D^{*-}(2010)$ cut-off in B^{0} channel; small isospin breaking effects at threshold
- Very clear contributions from $D_2(2460)$

Exotics

- Not very good description on $m(D_s\pi)$ around 2.9 GeV
- Further $m(D\pi)$ or $m(DD_s)$ contributions not help
- Add new states on $m(D_s\pi)$, $T^a_{c\bar{s}}(2900)^0$ and $T^a_{c\bar{s}}(2900)^{++}$ help a lot

More on exotics

- Isospin relationship imposed on m(Dπ), apart from D*(2010) and D*(2007), confirmed by separate fits
- Two scenarios considered for $T^a_{c\bar{s}}(2900)^0$ and $T^a_{c\bar{s}}(2900)^{++}$: with and without isospin relationship

Scenarios	Exotics	Mass (GeV)	Width (GeV)	Significance
No isospin relationship	$T^{a}_{c\bar{s}}(2900)^{0}$	$2892 \pm 14 \pm 15$	$119\pm26\pm12$	8.0σ
	$T^{a}_{c\bar{s}}(2900)^{++}$	$2921 \pm 17 \pm 19$	$\textbf{137}{\pm}\textbf{32}{\pm}\textbf{14}$	6.5σ
With isospin relationship	Both	$2908 \pm 11 \pm 20$	$136\pm23\pm11$	9.0σ

- Significance estimated considering look-else-where effects
- Two states consist with each other: isospin triplet
- $J^P = 0^+$ preferred for both cases

Discussion

- In $B^+ \to D^+ D^- K^+$ decays, two states observed with quark content $cs\overline{u}\overline{d}$
- $T^a_{cs}(2900)$ have quark content $c\overline{s}\overline{u}d$ and $c\overline{s}u\overline{d}$
- Very similar mass, $T^a_{cs}(2900)$ has larger width
- Only $0^+ T^a_{cs}(2900)$ states found

Preliminary

Exotic	Mass (MeV)	Width (MeV)	Spin-parity
<i>X</i> ₀ (2900)	$2866 \pm 7 \pm 2$	$57\pm12\pm4$	0+
$X_1(2900)$	$\textbf{2904} \pm \textbf{5} \pm \textbf{1}$	$110\pm11\pm4$	1-
$T^{a}_{car{s}}(2900)^{0}$	$2892 \pm 14 \pm 15$	$119\pm26\pm12$	0+
$T^{a}_{c\bar{s}}(2900)^{++}$	$\textbf{2921} \pm \textbf{17} \pm \textbf{19}$	$\textbf{137}{\pm}\textbf{32}{\pm}\textbf{14}$	0+

- X(5568) claimed by D0 collaboration in $B_s^0 \pi^{\pm}$ final states, with quark flavor $b\overline{s}\overline{u}d$, however, negative results from other experiments
- Some suggestions for $T^a_{cs}(2900)$ (1705.10088, 2204.02649, 2008.07145, 2008.07340 et al.)

Charge

• For double charged tetraquark candidates, if molecular, replusion potential around 1.44 MeV @ 1 fm!

- If compact states, all four quarks have positive charge
- Or may be just cusp

Isospin

- $T^a_{c\bar{s}}(2900)^0$ and $T^a_{c\bar{s}}(2900)^{++}$ are two of the isospin triplet;
- Missing one $(D_s^+\pi^0)$, hard for LHCb, though not entirely impossible;
- Some suggests $D_s^+(2317)$ (decaying into $D_s^+\pi^0$) to be a tetraquark state; though

no clue from current charged pion modes (contamination from $D_2(2460)$)

• I = 0 considered to have strong attraction while I = 1 to have weak attraction or

Observation of a resonant structure near the $D_s^+ D_s^-$ threshold

LHCb-PAPER-2022-018 LHCb-PAPER-2022-019

Yields and Dalitz plot distribution

• $B^+ \rightarrow D_s^+ D_s^- K^+$: ~360 signal candidates with a purity of ~85%

• No clear structures over Dalitz plot except accumulations at the $m(D_s^+D_s^-)$

threshold around 3.9 GeV

Yields and Dalitz plot distribution

• $B^+ \rightarrow D_s^+ D_s^- K^+$: ~360 signal candidates with a purity of ~85%

• No clear structures over Dalitz plot except accumulations at the $m(D_s^+D_s^-)$

threshold around 3.9 GeV

Amplitude fit results

• Only resonances on $m(D_s^+D_s^-)$ contribute

• Dominant contribution from NR (~46.6%) and a near threshold state X(3960)

(~24.2%, more than 12.6 *σ*)

- Evidence of contributions from $\psi(4260)$, $\psi(4660)$ and X(4140)
- Other states $(\chi_{c0}(4500), \chi_{c0}(4700), \psi(4040), \psi(4160), \psi(4415))$ and $\chi_{c2}(3930))$

also tested, though not significant

X(3960)

- Default: only with one channel = RBW
- Two channels considered: $D_s^+ D_s^- (D^+ D^-)$ with couplings: $0.33 \pm 1.18 (0.15 \pm 0.33)$ GeV, simultaneous fits with $B^+ \rightarrow D^+ D^- K^+$ decays needed

X(3960)

- $\frac{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+)}{\mathcal{B}(B^+ \to D^+ D^- K^+)} = \frac{N_{\text{sig}}^{\text{corr}}}{N_{\text{con}}^{\text{corr}}} \left[\frac{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)}{\mathcal{B}(D_s^+ \to K^- K^+ \pi^+)} \right]^2 = 0.525 \pm 0.033,$ $\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}^{(1)} \mathcal{F}_X^{(1)}}{\mathcal{B}^{(2)} \mathcal{F}_X^{(2)}} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08,$ Preliminary
 - Phase space of $D_s^+ D_s^-$ smaller than $D^+ D^-$
 - Suspiciously smaller branching fraction into D^+D^- final states: different resonances or a tetraquark with $c\bar{c}s\bar{s}$

X(4140)

- Dip around 4140 MeV can be seen clearly
- Significance around 3.9σ; mass and width determined to be

	<i>M</i> ₀ (MeV)	Γ ₀ (MeV)
RBW	4133 ±6 ± 11	$67\pm17\pm7$

- *J*/ψφ threshold: ~4116.4 MeV
- A KMatrix with single resonance with two decay channels

$$\begin{pmatrix} \mathcal{M}_{D_s^+ D_s^- \to D_s^+ D_s^-} & \mathcal{M}_{D_s^+ D_s^- \to J/\psi\phi} \\ \mathcal{M}_{J/\psi\phi \to D_s^+ D_s^-} & \mathcal{M}_{J/\psi\phi \to J/\psi\phi} \end{pmatrix} \equiv \begin{pmatrix} \mathcal{K}_{11} & \mathcal{K}_{12} \\ \mathcal{K}_{21} & \mathcal{K}_{22} \end{pmatrix}, \quad \mathcal{K}_{ab}(m) = \sum_R \frac{g_b^R g_a^R}{M_R^2 - m^2} + f_{ab},$$

• Can't conclude whether the dip is due to resonances or due to opening of new decay channel

CP violation of $B^+ \to \pi^+ \pi^+ \pi^-$

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

Looking for new physics in penguins

- New sources of CP violation easy to enter in penguins: smoking gun for NP search
- Competitive contributions from tree and penguin diagrams: large CPV

+ New Physics

CPV in three-body charmless B decays PRL 112 (2014) 011081 PRL 111 (2013) 101801 PRD 90 (2014) 112004

- Interesting CPV pattern seen on Dalitz plot of $B^+ \rightarrow h^+ h^- h'^+$, $h^{(\prime)} = K$, π
- Dalitz plot analysis needed to shed more light on understanding nature of these CPV

• Now, amplitude analyses of $B^+ \to \pi^+ \pi^- \pi^+$ and $B^+ \to K^+ K^- \pi^+$, with much larger statistics than previous B-factory analyses, has been performed

Dalitz plot analysis with $B^+ \rightarrow \pi^+ \pi^- \pi^+$

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

• Dalitz plot analysis with 20594 ±1569 events (3 fb⁻¹ data)

• Resonant contributions:

 $\rho - \omega, f_0(500), f_0(980)$, region: S-P wave interference $f_2(1270)$ region: D-S, P wave interference High mass: $KK - \pi\pi$ rescattering

• Three different methods to describe S-wave: Isobar model, K-Matrix approach, quasi model independent approach

$\pi^+\pi^-$ S-wave

• Good agreement between the three approaches

• Similar CPV pattern for the three approaches, as large as 10σ

• Fit fractions:

Component	lsobar	K-matrix	QMI
$ ho(770)^{0}$	$55.5 \pm 0.6 \pm 0.7 \pm 2.5$	$56.5 \pm 0.7 \pm 1.5 \pm 3.1$	$54.8 \pm 1.0 \pm 1.9 \pm 1.0$
$\omega(782)$	$0.50 \pm 0.03 \pm 0.03 \pm 0.04$	$0.47 \pm 0.04 \pm 0.01 \pm 0.03$	$0.57 \pm 0.10 \pm 0.12 \pm 0.12$
$f_2(1270)$	$9.0 \pm 0.3 \pm 0.8 \pm 1.4$	$9.3 \pm 0.4 \pm 0.6 \pm 2.4$	$9.6 \pm 0.4 \pm 0.7 \pm 3.9$
$ ho(1450)^{0}$	$5.2 \pm 0.3 \pm 0.4 \pm 1.9$	$10.5 \pm 0.7 \pm 0.8 \pm 4.5$	$7.4 \pm 0.5 \pm 3.9 \pm 1.1$
$ ho_3(1690)^0$	$0.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.0 \pm 0.1 \pm 0.5 \pm 0.1$
S-wave	$25.4 \pm 0.5 \pm 0.7 \pm 3.6$	$25.7 \pm 0.6 \pm 2.6 \pm 1.4$	$26.8 \ \pm 0.7 \ \pm 2.0 \ \pm 1.0$

• Dominant contributions from S-wave and $\rho(770)$

• CP asymmetries:

Component	lsobar	K-matrix	QMI
$\rho(770)^{0}$	$+0.7 \pm 1.1 \pm 1.2 \pm 1.5$	$+4.2 \pm 1.5 \pm 2.6 \pm 5.8$	$+4.4 \pm 1.7 \pm 2.3 \pm 1.6$
$\omega(782)$	$-4.8 \pm 6.5 \pm 6.6 \pm 3.5$	$-6.2 \pm 8.4 \pm 5.6 \pm 8.1$	$-7.9 \pm 16.5 \pm 14.2 \pm 7.0$
$f_2(1270)$	$+46.8 \pm 6.1 \pm 3.6 \pm 4.4$	$+42.8 \pm 4.1 \pm 2.1 \pm 8.9$	$+37.6 \pm 4.4 \pm 6.0 \pm 5.2$
$ ho(1450)^{0}$	$-12.9 \pm 3.3 \pm 7.0 \pm 35.7$	$+9.0 \pm 6.0 \pm 10.8 \pm 45.7$	$-15.5 \pm 7.3 \pm 14.3 \pm 32.2$
$ ho_3(1690)^0$	$-80.1 \pm 11.4 \pm 13.5 \pm 24.1$	$-35.7 \pm 10.8 \pm 8.5 \pm 35.9$	$-93.2 \pm 6.8 \pm 8.0 \pm 38.1$
S-wave	$+14.4 \pm 1.8 \pm 2.1 \pm 1.9$	$+15.8 \pm 2.6 \pm 2.1 \pm 6.9$	$+15.0 \pm 2.7 \pm 4.2 \pm 7.0$

• Large CPV from S-wave and $f_2(1270)$ (first observation)

New CP violation patterns

• CP violation around $\rho(770)$ pole well described by the three S-wave models

- Over 25σ significance for CPV due to S-P interference, first observation
- CP violation sign flips around $\rho(770)$ pole and over helicity angle

Conclusion

- Amplitude analysis widely used in flavor physics to study exotic states and to understand CP violation over phase space
- A general amplitude analysis tool, TF-PWA, has been developed for it
- Using TF-PWA, three new tetra-quark states have been observed by the LHCb experiment, one with double charges $(T_{cs}^{a}(2900)^{++})$ together with its neutral isospin partner, $T_{cs}^{a}(2900)^{0}$, and the third X(3960)
- Amplitude analysis in CP violation also results in interesting results
- You are welcomed to use TF-PWA to your favorite physics

Thank You for Your Attention

