

Flavour anomalies at LHCb

何吉波 (Jibo HE)

第四届重味物理与量子色动力学研讨会 2022年7月27-30日

The LHCb experiment

Indirect search for New Physics

- Precision measurement of heavy hadron decays
 - Flavour-Changing NC
 - Flavour-Changing CC
- Probe New Physics at high energy scale

Indirect search for NP (cont.)

• Overconstrain the CKM triangle

The LHCb trigger (2018)

LO, Hardware

- $-p_{\rm T}(\mu_1) \times p_{\rm T}(\mu_2) > (1.5 \text{ GeV})^2$
- $-p_{\rm T}(\mu) > 1.8 \,{\rm GeV}$
- $-E_{\rm T}(e) > 2.4 \, {\rm GeV}$
- $-E_{\rm T}(\gamma) > 3.0 {
 m GeV}$
- $-E_{\rm T}(h) > 3.7 \, {\rm GeV}$
- High Level Trigger
 - Stage1, $p_{\rm T}$, IP
 - Stage2, full selection

LHCb luminosity prospects

	LHC era	HL-LHC era		
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2022-24)	Run 4 (2027-30)	Run 5+ (2031+)
3 fb ⁻¹	6 fb⁻¹	23 fb ⁻¹	46 fb ⁻¹	>300 fb ⁻¹ ??
		Phase-1 Upgrade!!	Phase-1b Upgrade!?	Phase-2 Upgrade??

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$, 2020 combination

- $B_s^0 \rightarrow \mu^+ \mu^-$ observed in single experiment(s) LHCb (4.6 fb⁻¹): 7.8 σ , ATLAS (26 fb⁻¹): 4.6 σ , CMS (61 fb⁻¹): 5.6 σ
- Still compatible with SM, room for NP?

 $B_{(s)}^{\circ} \rightarrow \mu^+ \mu^- \text{ at CMS}$

• Using 2016-2018 data

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.95^{+0.39}_{-0.37} + 0.27^{+0.21}_{-0.22}) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-10} \text{ (95\% CL)}$

[CMS PAS BPH-21-006]

$B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime

• B_s^0 mixing \Rightarrow effective τ

$$\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}}}{1 - y_{s}^{2}} \left[\frac{1 + 2A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \right]$$
$$A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} \equiv \frac{R_{H}^{\mu^{+}\mu^{-}} - R_{L}^{\mu^{+}\mu^{-}}}{R_{H}^{\mu^{+}\mu^{-}} + R_{L}^{\mu^{+}\mu^{-}}} \quad A_{\Delta\Gamma} = 1 \text{ in SM}$$
$$y_{s} = \frac{\Delta\Gamma_{s}}{2\Gamma_{s}}$$

[De Bruyn *et al.,* PRL 109 (2012) 041801]

• Measured by LHCb/CMS, not yet sensitive to $A_{\Delta\Gamma}$

 $au_{\mu\mu} = 2.07 \pm 0.29 \pm 0.03$ ps

1.83 +0.23 +0.04 ps -0.20 -0.04 ps [CMS-PAS-BPH-21-006]

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Rates and angular distributions sensitive to NP

Branching fraction of $b \rightarrow s \mu^+ \mu^-$

• Pattern of tensions seen, theoretical uncertainty?

•
$$P'_5$$
 with $B^0 \to K^{*0} \mu^+ \mu^-$
• $P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}}$, less form-factor dependent
[S. Descotes-Genon, *et al.*, JHEP 01 (2013) 048]

• Also measured by Belle, ATLAS, CMS

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$, latest results

 $A_{\rm FB}$

0.5

▲Run 1 ▼2016

• Combined

• Updated with 2016 data

 $P'_{5,2}$ with $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

- All data, $K^{*+} \rightarrow K_S^0 \pi^+$
- Local deviation from SM, $3\sigma \text{ in } P_2' = \frac{2}{3}A_{\text{FB}}/(1-F_L)$

Lepton flavour universality

• In SM, three lepton families (e, μ, τ) have identical couplings to the gauge bosons

Lepton flavor universality violation? New Physics!

Experimental test of LFU

• Well established in SM, e.g. $W \rightarrow \ell v$

- Some tension at LEP,

addressed by ATLAS/CMS

[arXiv:2007.14040, CMS PAS SMP-18-011]

ALEPH 10.78 ± 0.29 DELPHI 10.55 ± 0.34 L3 10.78 ± 0.32 **OPAL** 10.71 ± 0.27 LEP W→ev 10.71 ± 0.16 **ALEPH** 10.87 ± 0.26 DELPHI 10.65 ± 0.27 L3 10.03 ± 0.31 **OPAL** 10.78 ± 0.26 10.63 ± 0.15 LEP W $\rightarrow \mu\nu$ **ALEPH** 11.25 ± 0.38 DELPHI 11.46 ± 0.43 L3 11.89 ± 0.45 OPAL 11.14 ± 0.31 LEP W $\rightarrow \tau v$ 11.38 ± 0.21 χ^2 /ndf = 6.3 / 9 LEP W \rightarrow Iv 10.86 ± 0.09 χ^2 /ndf = 15.4 / 11 10 12 11 $Br(W \rightarrow lv)$ [%]

W Leptonic Branching Ratios

LFU in B system, pre-LHCb

• R(D^(*)), Babar reported deviation of ~3.2σ

• No deviation seen in FCNC $b \rightarrow s\ell^+\ell^-$ decays

R(D^{*}) using munoic τ decays

- $\mathcal{B}(\tau \rightarrow \mu X)^{\sim} 17.4\%$
- 3D fits, R(D*)=0.336 ± 0.027 ± 0.030
 - Signal yields: 16 500 ± 1 670
 - Systematics: Simulation size, Mis-ID template, ...

 $X_{\bar{h}}$

 \overline{B}^{0}

ΡV

R(D^{*}) using 3-prong τ decays

- $\mathcal{B}(\tau \to 3\pi^{\pm}X)^{\sim}9\% + 4\%(\geq 1\pi^{0})$
- Normalized to $B^0 \rightarrow D^{*-}3\pi$

 $R_{had}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} \quad R(D^*) = R_{had}(D^*) \times \frac{\mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{\mathcal{B}(B^0 \to D^{*-} \mu^- \nu_{\mu})}$

- 3D fits, R(D*)=0.286 ± 0.019 ± 0.025 ± 0.021
 - Signal yields: 1273 ± 85
 - Systematics: Simulation size, $D \rightarrow 3\pi X$ template, ...

$R(\Lambda_c^+)$ using 3-prong τ decays

5σ

- Noramalized to $\Lambda_b^0 \to \Lambda_c^+ 3\pi$ $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_{\mu}) = (6.2 \pm 1.4)\%$ by DELPHI
- 3D fits, R(Λ⁺_c)=0.242 ± 0.026 ± 0.040 ± 0.059
 Signal yields: 349 ± 40
 - Systematics: $D \rightarrow 3\pi X$ template, $\Lambda_b^0 \rightarrow \Lambda_c^+ DX$

Summary of LFU in $b \rightarrow c \ell \nu$ decays

Deviations from SM seen by Babar/Belle/LHCb

Bremsstrahlung corrections

R(K), introduction

Double ratio to control systematics

Signal yields with all data

• 9 fb⁻¹ of data, $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$ $-N(B^+ \to K^+ e^+ e^-) = 1640 \pm 70$ $-N(B^+ \to K^+ \mu^+ \mu^-) = 3850 \pm 70$

R(K), latest results

- Deviation from SM, 3.1σ by LHCb
- Electron mode more close to SM prediction?

R(K^{*0}), results with Run-I data

• Deviations from SM seen by LHCb ($\sim 2.4\sigma$)

R(pK), results with Run-I+2016 Compatible with 1, difficult to predict R(pK)? R_{pK} LHCb Combinatorial $\rightarrow K^+K^-\mu^+\mu^-$ 1.2 $\rightarrow \overline{K}^{*0} \mu^+ \mu^-$ Candidates per 1. 09 09 00 09 00 1.0 444 ± 23 0.8 40 LHCb 0.6 20 2 6 0 5.8 5.4 5.6 $q^2 \left[\text{GeV}^2 / c^4 \right]$ $m(pK^{-}\mu^{+}\mu^{-})$ [GeV/c²] Candidates per 50 MeV/ c^2 Weighted candidates 50 45 LHCb ombinatorial LHCb $\rightarrow pK^{-}\pi^{0}e^{+}e^{-}$ 40 35 $pK^{-}J/\psi$ 30 30 $\rightarrow \overline{K}^{*0}e^+e^-$ 25 20 l 22 <u>+</u> 17 20 15 10 10 1500 2000 2500 0 5 5.5 $m(pK^{-})$ [MeV/c²] 6 $m(pK^{-}e^{+}e^{-})$ [GeV/ c^{2}]

Effective Field Theory of $b \rightarrow sll$

 Integrate out short-distance (high energy) interactions

Operator production expansion

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c.$$

- Wilson coefficients $C_i^{(\prime)}$ encode short-distance physics

- Operators $O_i^{(\prime)}$ describe low-enery QCD (using form factors), which have large theory uncertainties

Global fit

 Different experimental inputs, form factors, assumptions about non-local matrix elements, statistical frameworks

Implications?

Prospects

• LHCb upgrades (2025: 23 fb⁻¹, Upgrade-II: 300 fb⁻¹)

Observable	Current LHCb	LHCb 2025	Belle-II	LHCb Upgrade-II	ATLAS &CMS
$R_K(1 < q^2 < 6 \text{ GeV})$	0.05	0.025	0.036	0.007	
$R_{K^*}(1 < q^2 < 6 \text{ GeV})$	0.1	0.031	0.032	0.008	
R_{ϕ}, R_{pK}		0.08, 0.06		0.02, 0.02	
$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$	90%	34%		10%	21%
$ au_{B^0_S o \mu} + \mu^-$	14%	8%		2%	4%?
$R(D^*)$	0.026	0.0072	0.005	0.002	
$R(J/\psi)$	0.24	0.071		0.02	

Summary

- Some anomalies seen at LHCb
 - Electroweak penguin, differential branching fraction, P_5' in $B \to K^* \mu^+ \mu^-$, $\mathcal{R}_{K^{(*0)}}$
 - LFU in semi-leptonic decay, \mathcal{R}_{D^*}

to be confirmed or refuted with more data

• Your suggestions are always appreciated!

