

# **Deciphering**

# the Long-distance Penguin contribution

to  $B o \gamma \gamma$  decays

Qin Qin (秦溱)

HUST (华中科技大学)

QQ, Y.-L. Shen, C. Wang, Y.-M. Wang, 2207.02691





#### **Contents**

- $_{ullet}$  Why  $ar{B} 
  ightarrow \gamma \gamma ?$
- ullet History of (1)  $ar{B} 
  ightarrow \gamma \gamma$  and (2) the long-distance penguin contribution
- Factorization of the long-distance penguin contribution

– a novel B-meson distribution amplitude

- Numerics
- Summary and Prospects

# **B** decays are important!



# Why $ar{B} ightarrow \gamma \gamma$ ?

- Sensitive to <u>dynamics beyond the SM</u> (FCNC), e.g. <u>CP violation</u>
- Extraction of the CKM angle γ
- Clean environment to address the intricate <u>strong interaction</u>
   <u>mechanism</u> of the heavy-meson systems

— structure of the B meson

| Bel | le II |      |
|-----|-------|------|
| Phy | /sics | Book |

|                               |                   |        | peory Sys. limit (Discovery) [ab 1]  Normally NP |          |               |        |       |
|-------------------------------|-------------------|--------|--------------------------------------------------|----------|---------------|--------|-------|
| Process                       | Opetraple         | Theory | Sys. limi                                        | t (Disce | o<br>vs Belle | Anomal | NP NP |
| $B \to X_s l^+ l^-$           | $R_{X_s}$         | ***    | >50                                              | ***      | ***           | **     | ***   |
| $ B \to K^{(*)}e^+e^- $       | $R(K^{(*)})$      | ***    | > 50                                             | **       | ***           | ***    | ***   |
| $B \to X_s \gamma$            | Br.               | **     | 1-5                                              | ***      | *             | *      | **    |
| $B_{d,(s)} \to \gamma \gamma$ | $Br., A_{\rm CP}$ | **     | >                                                | **       | **            | -      | **    |
|                               |                   |        | 50(5)                                            |          |               |        |       |
| $ B \to K^* e^+ e^- $         | $P_5'$            | **     | > 50                                             | ***      | **            | ***    | ***   |
| $B \to K \tau l$              | Br.               | ***    | >50                                              | **       | ***           | **     | ***   |

# Why $ar{B} ightarrow \gamma \gamma$ ?

- Sensitive to <u>dynamics beyond the SM</u> (FCNC), e.g. <u>CP violation</u>
- Extraction of the CKM angle γ
- Clean environment to address the intricate <u>strong interaction</u>
   <u>mechanism</u> of the heavy-meson systems

— structure of the B meson

# Belle II Physics Book

| Observables                                | Belle $0.71 \mathrm{ab^{-1}}  (0.12 \mathrm{ab^{-1}})$ | Belle II 5 ab <sup>-1</sup> | Belle II $50 \mathrm{ab^{-1}}$ |
|--------------------------------------------|--------------------------------------------------------|-----------------------------|--------------------------------|
| $Br(B_d \to \gamma \gamma)$                | < 740%                                                 | 30%                         | 9.6%                           |
| $A_{CP}(B_d \to \gamma \gamma)$            | _                                                      | 78%                         | 25%                            |
| $\operatorname{Br}(B_s \to \gamma \gamma)$ | <250%                                                  | 23%                         | _                              |

$$\mathcal{BR}(B_d \to \gamma \gamma) = (1.352^{+1.242}_{-0.745}) \times 10^{-8}, \quad \mathcal{BR}(B_s \to \gamma \gamma) = (2.964^{+1.800}_{-1.614}) \times 10^{-7}$$

[Y.-L. Shen, Y.-M. Wang, Y.-B. Wei, 2009.02723]

# History of $\bar{B} \to \gamma \gamma$

• LO + NLO



$$\bar{A}(\bar{B}_{q} \to \gamma \gamma) = -\frac{4 G_{F}}{\sqrt{2}} \frac{\alpha_{\text{em}}}{4\pi} e^{*\alpha}(p) e^{*\beta}(q) \times \sum_{p=u,c} V_{pb} V_{pq}^{*} \sum_{i=1}^{8} C_{i} T_{i,\alpha\beta}^{(p)},$$

$$Leading power$$

$$T_{i,\alpha\beta}^{(p)} = i \, m_{B_{q}}^{3} \left[ \left( g_{\alpha\beta}^{\perp} - i \, \varepsilon_{\alpha\beta}^{\perp} \right) F_{i,L}^{(p)} - \left( g_{\alpha\beta}^{\perp} + i \, \varepsilon_{\alpha\beta}^{\perp} \right) F_{i,R}^{(p)} \right], \quad F_{L}^{\text{LP}} \propto m_{b} \int_{0}^{\infty} \frac{d\omega}{\omega} \, \phi_{B}^{+}(\omega,\mu) \propto \frac{m_{b}}{\lambda_{b}}$$
Two polarizations

[Bosch, Buchalla, hep-ph/0208202; Descotes-Genon, Sacharajda, hep-ph/0212162]

NLL corrections + Systematic power corrections

both ~ 
$$\mathcal{O}(10\%)$$

[Y.-L. Shen, Y.-M. Wang, Y.-B. Wei, 2009.02723]

One important but tough piece missing — — long-distance

penguin contribution



## History of Long-distance penguin contribution

#### In inclusive $b \rightarrow s$ decays

- Realized in  $\bar{B} \to X_s \gamma$  [Voloshin, '96; Ligeti, Randall, Wise, '97; Buchalla, Isidori, Rey, '97]
- Factorization in  $\bar{B} \to X_s \gamma$  [Benzke, Lee, Neubert, Paz, 1003.5012]
- Factorization in  $\bar{B} \to X_s \ell \ell$ [Benzke, Hurth, Turczyk, 1705.10366]

#### In exclusive $b \rightarrow s$ decays

- Initiated in  $B \to K^* \gamma$ [Khodjamirian, Ruckl, Stoll, Wyler, '97]
- Developed in  $B \to K^*\ell\ell$ [Khodjamirian, Mannel, Pivorarov, Wang, 1006.4945]



Soft gluon from charm-loop

## History of Long-distance penguin contribution





 $P_5'$ : an angular-distribution observable

[LHCb, 2003.04831]

#### Charm-loop effect in $B o K^{(*)}\ell^+\ell^-$ and $B o K^*\gamma$

A. Khodjamirian (Siegen U.), Th. Mannel (Siegen U.), A.A. Pivovarov (Siegen U.), Y.-M. Wang (Siegen U.) Jun, 2010

35 pages

Published in: *JHEP* 09 (2010) 089 e-Print: 1006.4945 [hep-ph]



$$\mathcal{H}_{\text{eff}} = \frac{4 G_F}{\sqrt{2}} \sum_{p=u,c} V_{pb} V_{pq}^* \left[ C_1(\nu) P_1^p(\nu) + C_2(\nu) P_2^p(\nu) + \sum_{i=3}^8 C_i(\nu) P_i(\nu) + \sum_{i=3}^8 C_i(\nu) P_i^Q(\nu) \right] + \text{h.c.},$$

$$\begin{split} P_{1}^{p} &= \left( \bar{q}_{L} \gamma_{\mu} T^{a} p_{L} \right) \left( \bar{p}_{L} \gamma^{\mu} T^{a} b_{L} \right), & P_{2}^{p} &= \left( \bar{q}_{L} \gamma_{\mu} p_{L} \right) \left( \bar{p}_{L} \gamma^{\mu} b_{L} \right), \\ P_{3} &= \left( \bar{q}_{L} \gamma_{\mu} b_{L} \right) \sum_{q'} \left( \bar{q}' \gamma^{\mu} q' \right), & P_{4} &= \left( \bar{q}_{L} \gamma_{\mu} T^{a} b_{L} \right) \sum_{q'} \left( \bar{q}' \gamma^{\mu} T^{a} q' \right), \\ P_{5} &= \left( \bar{q}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} b_{L} \right) \sum_{q'} \left( \bar{q}' \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} q' \right), & \\ P_{6} &= \left( \bar{q}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} T^{a} b_{L} \right) \sum_{q'} \left( \bar{q}' \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} T^{a} q' \right), \end{split}$$

Integrate out the <u>hard</u> and <u>hard-collinear</u> d.o.f.

$$M = H * J * S$$
  $(m_b \gg m_c \sim \mathcal{O}(\sqrt{\Lambda m_b}) \gg \Lambda)$ 

First-step match:

$$M \ni \left( C_2 - \frac{C_1}{2N_c} \right) Q_p \left[ F\left( \frac{m_p^2 - i0^+}{(p-l)^2} \right) - 1 \right] \frac{p^{\alpha}}{(p-l)^2} \left[ \bar{q}(\tilde{q}) \gamma_{\beta} P_L G_{\mu\alpha} \tilde{F}^{\mu\beta} b(v) \right]$$

$$F(x) = 4x \arctan^{2} \left(\frac{1}{\sqrt{4x - 1}}\right)$$

$$(p - l)^{2} = -2p \cdot l = -m_{b} \bar{n} \cdot l$$



Non-local operator!



Second-step match:

$$\langle \gamma(p) \, \gamma(q) \, | \, \bar{q} \, \gamma_{\beta} \, P_L \, G_{\mu\alpha} \, \, \tilde{F}^{\mu\beta} \, b \, | \, g(l) \, b(v) \, \bar{q}(k) \rangle$$

$$\Rightarrow \frac{i g_{\text{em}} e_q}{(q - k)^2} e^{\mu \beta \lambda \tau} p_{\lambda} e_{\tau}^*(p) e_{\rho}^*(q) \times \left[ \bar{q}(k) \gamma_{\perp}^{\rho} \ q \gamma_{\beta} P_L G_{\mu \alpha}(\ell) b(v) \right]$$

$$(q - k)^2 = -2q \cdot k = -m_b n \cdot k$$

g b  $p // \bar{n}$  q q // n q // n

l: soft

- The hard-kernel (jet functions) depends on 2 different light-cone components of the gluon and light quark momenta.
- It becomes evident to introduce the <u>3-particle</u> B-meson distribution amplitude with <u>2 light-cone directions</u>.

$$H \star J \star \bar{J} \star \Phi_{\rm G}$$

#### The explicit factorization formula:

$$\sum_{i=1}^{8} C_{i} F_{i,L}^{(p), \, \text{soft} \, 4q} = -\frac{Q_{q} f_{B_{q}}}{m_{B_{q}}} \int_{0}^{\infty} \frac{d\omega_{1}}{\omega_{1}} \int_{0}^{\infty} \frac{d\omega_{2}}{\omega_{2}} \left( C_{2} - \frac{C_{1}}{2N_{c}} \right) Q_{p} \left[ F(-\frac{m_{p}^{2}}{m_{b}\omega_{2}}) \right) + 1 \right] \times \Phi_{G}(\omega_{1}, \omega_{2}, \mu)$$

The light quark momentum component  $\omega_1=n\cdot k$  ; The soft gluon momentum component  $\omega_2=\bar{n}\cdot l$  .

#### The novel B-meson DA:

$$\langle 0 | \bar{q}_{s}(\tau_{1}n)(g_{s}G_{\mu\nu})(\tau_{2}\bar{n})\bar{n}^{\nu} h\gamma_{\perp}^{\mu}\gamma_{5}h_{\nu}(0) | \bar{B}_{\nu}\rangle$$

$$= 2\tilde{f}_{B}(\mu) m_{B} \int_{0}^{\infty} d\omega_{1} \int_{0}^{\infty} d\omega_{2} \exp\left[-i(\omega_{1}\tau_{1} + \omega_{2}\tau_{2})\right] \Phi_{G}(\omega_{1}, \omega_{2}, \mu)$$

The quark and gluon fields are localized on 2 distinct light-cone directions.

It might opens an exciting new research subfield aiming at the multidimensional tomography of the composite bottom-meson systems.

#### The normalization conditions of $\Phi_G$ :

Matching the conventional 3-particle B meson DAs as  $au_1$  or  $au_2 o 0$ .

$$\langle 0 \, | \, \bar{q}(z_1) (g_s \, G_{\mu\nu})(z_2) \, \bar{n}^\nu \; \; \hbar \gamma_\perp^\mu \gamma_5 \, h_\nu(0) \, | \, \bar{B}_\nu \rangle = 2 \, \tilde{f}_B(\mu) \Phi_4(z_1, z_2, \mu) \qquad \qquad \text{Twist 4}$$

$$\langle 0 \, | \, \bar{q}(z_1)(g_s \, G_{\mu\nu})(z_2) \, n^\nu \, \, \, \hbar \gamma_1^\mu \gamma_5 \, h_\nu(0) \, | \, \bar{B}_\nu \rangle = 2 \, \tilde{f}_B(\mu) \Phi_5(z_1, z_2, \mu) \qquad \qquad \text{Twist 5}$$

[Braun, Ji, Manashov, 1703.02446]



## The asymptotic behaviors of $\Phi_G$ :

$$\Phi_{\rm G}(\omega_1,\omega_2,\mu) \sim \omega_1 \,\omega_2^2 \,\,{\rm at}\,\,\omega_1,\,\omega_2 \to 0$$

#### The explicit factorization formula:

$$\sum_{i=1}^{8} C_{i} F_{i,L}^{(p), \, \text{soft} \, 4q} = -\frac{Q_{q} \, f_{B_{q}}}{m_{B_{q}}} \int_{0}^{\infty} \frac{d\omega_{1}}{\omega_{1}} \int_{0}^{\infty} \frac{d\omega_{2}}{\omega_{2}} \left( C_{2} - \frac{C_{1}}{2N_{c}} \right) Q_{p} \left[ F(-\frac{m_{p}^{2}}{m_{b}\omega_{2}}) - 1 \right] \times \Phi_{G}(\omega_{1}, \omega_{2}, \mu)$$

$$\Phi_{\rm G}(\omega_1,\omega_2,\mu) \sim \omega_1 \,\omega_2^2 \,\,{\rm at}\,\,\omega_1,\,\omega_2 \to 0$$



## The convolution integral converges.

$$\int_{0}^{\infty} d\omega_{1} \, \Phi_{G}(\omega_{1}, \omega_{2}, \mu) = \int_{0}^{\infty} d\omega_{1} \, \Phi_{4}(\omega_{1}, \omega_{2}, \mu) \,,$$

$$\int_{0}^{\infty} d\omega_{2} \, \Phi_{G}(\omega_{1}, \omega_{2}, \mu) = \int_{0}^{\infty} d\omega_{2} \, \Phi_{5}(\omega_{1}, \omega_{2}, \mu) \,,$$

$$\int_{0}^{\infty} d\omega_{1} \, \int_{0}^{\infty} d\omega_{2} \, \Phi_{G}(\omega_{1}, \omega_{2}, \mu) = \frac{\lambda_{E}^{2} + \lambda_{H}^{2}}{3} \,,$$



#### **Numerics**

## The $\Phi_G$ parametrization:

$$\Phi_{G}(\omega_{1}, \omega_{2}, \mu_{0}) = \frac{\lambda_{E}^{2} + \lambda_{H}^{2}}{6} \frac{\omega_{1}\omega_{2}^{2}}{\omega_{0}^{5}} \exp\left(-\frac{\omega_{1} + \omega_{2}}{\omega_{0}}\right) \frac{\Gamma(\beta + 2)}{\Gamma(\alpha + 2)} U\left(\beta - \alpha, 4 - \alpha, \frac{\omega_{1} + \omega_{2}}{\omega_{0}}\right)$$



- The up-loop contribution dominates; the charm-loop is 1-order smaller.
- The new power correction accidentally cancels the previous ones.



# **Numerics**

# The $B_d$ results:

|                                                | Central Value   | Total Error          | $\lambda_{B_d}$    | $\{\widehat{\sigma}_{B_d}^{(1)},\widehat{\sigma}_{B_d}^{(2)}\}$ | $\mu$              | ν                  | $\mu_{ m h}$       | $ar{\Lambda}$      | $m_c^{ m PS}$      |
|------------------------------------------------|-----------------|----------------------|--------------------|-----------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| $10^8 \times \mathcal{BR}$                     | 1.929 [1.900]   | $+1.096 \\ -1.012$   | $+0.680 \\ -0.439$ | $+0.736 \\ -0.779$                                              | $+0.083 \\ -0.299$ | $+0.278 \\ -0.287$ | $+0.246 \\ -0.066$ | $+0.212 \\ -0.200$ | $+0.043 \\ -0.043$ |
| $f_{\parallel}$                                | 0.408 [0.407]   | $+0.044 \\ -0.046$   | $+0.015 \\ -0.015$ | +0.016 $-0.033$                                                 | +0.002<br>-0.009   | +0.037 $-0.026$    | +0.007 $-0.002$    | $+0.005 \\ -0.006$ | $+0.002 \\ -0.002$ |
| $f_{\perp}$                                    | 0.592 [0.593]   | $^{+0.046}_{-0.044}$ | $+0.015 \\ -0.015$ | +0.033<br>-0.016                                                | +0.009 $-0.002$    | +0.026 $-0.037$    | +0.002 $-0.007$    | +0.006 $-0.005$    | $+0.002 \\ -0.002$ |
| $\mathcal{A}_{	ext{CP}}^{	ext{dir},\parallel}$ | 0.126 [0.129]   | +0.043<br>-0.027     | +0.007 $-0.004$    | $^{+0.017}_{-0.010}$                                            | +0.013<br>-0.008   | +0.027 $-0.018$    | +0.024 $-0.012$    | +0.007 $-0.007$    | +0.004<br>-0.004   |
| $\mathcal{A}_{	ext{CP}}^{	ext{mix},\parallel}$ | -0.197 [-0.154] | $^{+0.053}_{-0.084}$ | +0.019 $-0.036$    | $^{+0.001}_{-0.002}$                                            | +0.021 $-0.047$    | +0.026 $-0.040$    | $+0.015 \\ -0.029$ | $+0.011 \\ -0.013$ | +0.008<br>-0.009   |
| $\mathcal{A}_{\Delta\Gamma}^{\parallel}$       | -0.972 [-0.980] | $+0.024 \\ -0.013$   | +0.009<br>-0.004   | +0.003<br>-0.002                                                | $+0.013 \\ -0.005$ | $+0.013 \\ -0.007$ | $+0.010 \\ -0.004$ | +0.004 $-0.003$    | $+0.002 \\ -0.002$ |
| ${\cal A}_{	ext{CP}}^{	ext{dir},\perp}$        | 0.330 [0.326]   | $^{+0.078}_{-0.053}$ | $+0.015 \\ -0.012$ | $+0.060 \\ -0.035$                                              | $+0.035 \\ -0.014$ | $+0.012 \\ -0.024$ | $+0.014 \\ -0.010$ | $+0.018 \\ -0.016$ | $+0.018 \\ -0.017$ |
| $\mathcal{A}_{	ext{CP}}^{	ext{mix},ot}$        | 0.136 [0.101]   | +0.087<br>-0.066     | +0.043<br>-0.028   | $+0.015 \\ -0.035$                                              | +0.025<br>-0.014   | +0.060<br>-0.038   | +0.026 $-0.012$    | +0.003<br>-0.003   | +0.009<br>-0.008   |
| ${\cal A}_{\Delta\Gamma}^{\perp}$              | 0.934 [0.940]   | $^{+0.017}_{-0.030}$ | $+0.000 \\ -0.003$ | $^{+0.009}_{-0.019}$                                            | +0.007 $-0.017$    | $+0.001 \\ -0.002$ | $+0.005 \\ -0.009$ | +0.006 $-0.007$    | $+0.007 \\ -0.008$ |

## **Summary and prospects**

- ullet We have factorized the long-distance penguin contribution to  $ar{B} o \gamma \gamma$  decay, for the first time in an exclusive decay.
- A novel B-meson DA is defined, with quark and gluon fields localized on two different light-cone directions. It will open a new subfield about the inner structure of the B meson.
- The new contribution cancels the known factorizable power corrections, making  $\bar{B} \to \gamma \gamma$  a clean channel to determine  $\lambda B$  and to probe the nonstandard four-fermion interactions.
- The developed formalism has a broad field of applications to the entire spectrum of the exclusive FCNC B-meson decays, including flagship modes, e.g. B→K\*γ, B→K\*μμ.

# Thank you!

**Backup** 

|                                                                             | $B_d$                                     | $B_s$                                                      |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|--|--|--|
| $\mathcal{A}^{\mathrm{LP},\mathrm{NLL}}\left[10^{-4}\right]$                | 3.4 + 1.9 i                               | -20 - 0.37 i                                               |  |  |  |
| $\mathcal{A}^{\rm fac,NLP} \left[10^{-4}\right]$                            | -0.15 - 0.53i                             | 0.92 + 2.6 i                                               |  |  |  |
| $\mathcal{A}_R^{\mathrm{fac,NLP}} \left[ 10^{-4} \right]$                   | 0.25 - 0.36i                              | -1.6 + 2.6 i                                               |  |  |  |
| $\mathcal{A}^{\mathrm{had},\gamma}\left[10^{-4}\right]$                     | -0.30 - 0.17i                             | 1.4 - 0.0021 i                                             |  |  |  |
| $\mathcal{A}^{\mathrm{soft,4q}} \left[ 10^{-4} \right]$                     | (-0.0079 + 0.078i)                        | -0.11 + 0.016i                                             |  |  |  |
| $(F_u^{\text{LP},\text{NLL}}, F_c^{\text{LP},\text{NLL}})$                  | (-0.056 - 0.0092i, -0.048 - 0.0019i)      | (-0.057 - 0.0094i, -0.049 - 0.0020i)                       |  |  |  |
| $(F_u^{\mathrm{had},\gamma}, F_c^{\mathrm{had},\gamma})$                    | (0.0051 + 0.00092i, 0.0043 + 0.00019i)    | (0.0094 + 0.0016i, 0.0034 + 0.00016i)                      |  |  |  |
| $(F_u^{\text{soft,4q}}, F_c^{\text{soft,4q}})$                              | (-0.0024, -0.00025)                       | (-0.0021, -0.00025)                                        |  |  |  |
| $(F_u^{\mathrm{HC}}, F_c^{\mathrm{HC}})$                                    | (0.0055, 0.0055)                          | (0.0067, 0.0067)                                           |  |  |  |
| $(F_u^{\rm m_q}, F_c^{\rm m_q})$                                            | (0.000049, 0.000049)                      | (0.00078, 0.00078) [0.00079]                               |  |  |  |
| $(F_u^{\mathbf{A}_2}, F_c^{\mathbf{A}_2})$                                  | (-0.0010, -0.0010)                        | (-0.0011, -0.0011)                                         |  |  |  |
| $(F_u^{\mathrm{HT}}, F_c^{\mathrm{HT}})$                                    | (0.0046, 0.0046) [0.0047]                 | (0.0048, 0.0048) [0.0050]                                  |  |  |  |
| $(F_u^{\mathbf{Q_b}}, F_c^{\mathbf{Q_b}})$                                  | (-0.0036, -0.0036)                        | (-0.0043, -0.0043)                                         |  |  |  |
| $(F_u^{\text{WA}}, F_c^{\text{WA}})$                                        | (-0.0049 + 0.000092i, -0.0037 + 0.0056i)  | $ \left  (-0.0059 + 0.00011i, -0.0045 + 0.0065i) \right  $ |  |  |  |
| $(F_u^{\mathrm{fac},\mathrm{NLP}},F_c^{\mathrm{fac},\mathrm{NLP}})$         | (0.00054 + 0.000092i, 0.0018 + 0.0056i)   | (0.00098 + 0.00011i, 0.0023 + 0.0065i)                     |  |  |  |
|                                                                             | [(0.00063 + 0.000092i, 0.0019 + 0.0056i)] | (0.0011 + 0.00011i, 0.0024 + 0.0065i)                      |  |  |  |
| $(F_{R,u}^{\mathrm{fac},\mathrm{NLP}},F_{R,c}^{\mathrm{fac},\mathrm{NLP}})$ | (-0.0046 + 0.000092i, -0.0033 + 0.0056i)  | $ \left  (-0.0054 + 0.00011i, -0.0041 + 0.0065i) \right  $ |  |  |  |

$$A = V_{uq}^* V_{ub} F_u + V_{cq}^* V_{cb} F_c \ (q = d, s)$$