第四届重味物理与量子色动力学研讨会, 2022/07/27-07/30

CP asymmetries in $\tau \rightarrow K_S \pi \nu_{\tau}$ decays

李新强

based on:

Feng-Zhi Chen, Xin-Qiang Li, Shi-Can Peng, Ya-Dong Yang, Hong-Hao Zhang, JHEP 01 (2022) 108
Feng-Zhi Chen, Xin-Qiang Li, Ya-Dong Yang, JHEP 05 (2020) 151
Feng-Zhi Chen, Xin-Qiang Li, Ya-Dong Yang, Xin Zhang, PRD 100 (2019) 113006

Outline

□ Introduction

\Box CP asymmetries in $\tau \rightarrow K_S \pi \nu_{\tau}$ decays within the SM

\Box CP asymmetries in $\tau \rightarrow K_S \pi \nu_{\tau}$ decays within a general EFT

Summary

$$_{\rm CP}^{\rm rate} \equiv \frac{\Gamma(\tau^+ \to [\pi^+ \pi^-] \, {}^{"}_{K_{S}"} \, \pi^+ \bar{\nu}_{\tau}) - \Gamma(\tau^- \to [\pi^+ \pi^-] \, {}^{"}_{K_{S}"} \, \pi^- \nu_{\tau})}{\Gamma(\tau^+ \to [\pi^+ \pi^-] \, {}^{"}_{K_{S}"} \, \pi^+ \bar{\nu}_{\tau}) + \Gamma(\tau^- \to [\pi^+ \pi^-] \, {}^{"}_{K_{S}"} \, \pi^- \nu_{\tau})}$$

BaBar Collaboration, PRD 85 (2012) 031102

- commonly discussed decay-rate asymmetry
- > CP asymmetry in the angular distribution

 $A_{CP}^{i} = \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d^{2} \Gamma(\tau^{-} \to K_{S} \pi^{-} \nu_{\tau})}{ds \, d \cos \alpha} - \frac{d^{2} \Gamma(\tau^{+} \to K_{S} \pi^{+} \bar{\nu}_{\tau})}{ds \, d \cos \alpha} \right] ds \, d \cos \alpha}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d^{2} \Gamma(\tau^{-} \to K_{S} \pi^{-} \nu_{\tau})}{ds \, d \cos \alpha} + \frac{d^{2} \Gamma(\tau^{+} \to K_{S} \pi^{+} \bar{\nu}_{\tau})}{ds \, d \cos \alpha} \right] ds \, d \cos \alpha}$

Belle Collaboration, PRL 107 (2011) 131801

Why $\tau \rightarrow K_S \pi \nu_{\tau}$ decays

□ Has largest Br among semi-leptonic decays with 1 kaon [D. EPIFANOV et al. [Belle], PLB 654 (2007) 65]

e^{-} τ^{+} V^{+} τ^{+} τ^{+} τ^{+} τ^{+} τ^{+}

Br $(\tau \rightarrow K_S \pi \nu_{\tau}) = (0.404 \pm 0.002(\text{stat.}) \pm 0.013(\text{syst.}))\%$

> The hadronic current parametrized by two form factors:

 $1 1.2 1.4 \sqrt{s, GeV/c^2}$

$$J^{\mu} = F_{V}(q^{2}) \left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^{2}} \right) (q_{1} - q_{2})_{\nu} + F_{S}(q^{2})q^{\mu}, \ q^{\mu} = q_{1}^{\mu} + q_{2}^{\mu}$$

• F_{V} : $K^{*}(892)^{\pm}, K^{*}(1410)^{\pm}, K^{*}(1680)^{\pm};$
• F_{S} : $K^{*}(800)^{\pm}(\kappa), K^{*}(1430)^{\pm};$

a)

1.6

- > The $K^*(892)$ alone not sufficient to describe the $K\pi$ spectrum
- Fitted result with $K^*(892) + K^*(800) + K^*(1410)$ model reproduces data well

 $\Box \text{ Searches for } \mathbb{CPV} \text{ in } \tau \to K_S \pi \nu_\tau \text{ very promising}^{^{0.8}}$

2022/07/28

N_{EVENTS}/(11.5 MeV/c²)

Why $\tau \rightarrow K_S \pi \nu_{\tau}$ decays

 \Box Decay-rate asymmetry in $\tau \rightarrow K_S \pi \nu_{\tau}$ decays

$$\mathcal{A}_{\mathrm{CP}}^{\mathrm{rate}} \equiv \frac{\Gamma(\tau^+ \to [\pi^+ \pi^-]_{`'K_S"} \pi^+ \bar{\nu}_{\tau}) - \Gamma(\tau^- \to [\pi^+ \pi^-]_{`'K_S"} \pi^- \nu_{\tau})}{\Gamma(\tau^+ \to [\pi^+ \pi^-]_{''K_S"} \pi^+ \bar{\nu}_{\tau}) + \Gamma(\tau^- \to [\pi^+ \pi^-]_{''K_S"} \pi^- \nu_{\tau})}$$

2.8 σ 偏差 $\begin{cases} A_{\rm CP}^{\rm Exp} = (-3.6 \pm 2.3 \pm 1.1) \times 10^{-3} \\ A_{\rm CP}^{\rm SM} = (3.6 \pm 0.1) \times 10^{-3} \end{cases}$

BaBar Collaboration, PRD 85 (2012) 031102
I. Bigi and A. I. Sanda PLB 625 (2005) 47
Y. Grossman and Y. Nir, JHEP 04 (2012) 002

\Box CP asymmetry in the angular distribution of $\tau \rightarrow K_S \pi \nu_{\tau}$ decays

$\int_{S^{-1}}^{S_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d^2 \Gamma(\tau^- \to K_S \pi^- \nu_{\tau})}{ds d \cos \alpha} - \frac{d^2 \Gamma(\tau^+ \to K_S \pi^+ \bar{\nu}_{\tau})}{ds d \cos \alpha} \right] ds d \cos \alpha$	\sqrt{s} [GeV]	$A_{{ m SM},i}^{CP}$ [10 ⁻³]	${\cal A}_{{ m exp},i}^{CP}$ [10 ⁻³]
$A'_{CP} = \frac{d^{3}\Gamma_{1,1} d^{2}\Gamma_{1}}{1 (c^{5}2 i) (1 (d^{2}\Gamma_{1,1} + K_{S}\pi^{-}\nu_{T})) (d^{2}\Gamma_{1,1} + K_{S}\pi^{+}\bar{\nu}_{T})} d^{2}\Gamma_{1,1} d^{2}\Gamma_{1$	0.625 - 0.890	$\textbf{0.39}\pm\textbf{0.01}$	$7.9\pm3.0\pm2.8$
$\frac{1}{2} \int_{s_{1,i}}^{2,i} \int_{-1} \left[\frac{ds d \cos \alpha}{ds d \cos \alpha} + \frac{ds d \cos \alpha}{ds d \cos \alpha} \right] ds d \cos \alpha$	0.890 - 1.110	$\textbf{0.04} \pm \textbf{0.01}$	$1.8\pm2.1\pm1.4$
Belle Collaboration, PRL 107 (2011) 131801	1.110 - 1.420	0.12 ± 0.02	$-4.6\pm7.2\pm1.7$
compatible with zero with a sensitivity of $\mathcal{O}(10^{-3})$	1.420 - 1.775	0.27 ± 0.05	$-2.3 \pm 19.1 \pm 5.5$

□ More precise measurements are expected from Belle II & SCTF,

□ Feynman diagrams at the tree level in weak interaction within the SM:

 \Box According to the well-known $\Delta S = \Delta Q$ rule, τ^- can only decay into \overline{K}^0 , while τ^+ into K^0

□ Within the SM, *V_{us}* is real (no weak phase) & the same strong phase between the two CP-related processes

$$\mathcal{A}(\tau^+ \to K^0 \pi^+ \bar{\nu}_\tau) = \mathcal{A}(\tau^- \to \bar{K}^0 \pi^- \nu_\tau)$$

□ However, due to $K^0 - \overline{K}^0$ mixing, the exp. reconstructed kaons are the mass $(|K_S\rangle, |K_L\rangle)$ rather than the flavor $(|K^0\rangle, |\overline{K}^0\rangle)$ eigenstates

D But the CPV in neutral kaon system well established: $\epsilon = 2.3 \times 10^{-3}$

2022/07/28

decays in the SM!

Once CPV in $K^0 - \overline{K}^0$ **mixing included, non-zero CP asymmetries appear in the decays**

 \Box When $\langle K_{S,L} |$ intermediate states involved, the so-called reciprocal basis more efficient

$$\begin{pmatrix} |K_L\rangle \\ |K_S\rangle \end{pmatrix} = \begin{pmatrix} p & -q \\ p & q \end{pmatrix} \begin{pmatrix} |K^0\rangle \\ |\bar{K}^0\rangle \end{pmatrix} = \mathbf{X}^T \begin{pmatrix} |K^0\rangle \\ |\bar{K}^0\rangle \end{pmatrix}$$
$$\mathbf{X}^{-1}\mathbf{H}\mathbf{X} = \begin{pmatrix} \mu_L & 0 \\ 0 & \mu_S \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} p & p \\ -q & q \end{pmatrix}$$

> $H = M - i/2\Gamma$ is NOT a normal matrix $[H, H^{\dagger}] = 0$

X is NOT unitary in the presence of CPV

$$oldsymbol{X}^{\dagger}oldsymbol{X} = oldsymbol{X}oldsymbol{X}^{\dagger} = \left(egin{array}{cc} 1 & |oldsymbol{p}|^2 - |oldsymbol{q}|^2 \ |oldsymbol{p}|^2 - |oldsymbol{q}|^2 & 1 \end{array}
ight)$$

➤ thus, we will have $\langle \widetilde{K}_{S,L} | \neq \langle K_{S,L} | !$

The time evolution operator for the neutral kaon system:

$$\langle ilde{\mathcal{K}}_{\mathcal{S},L} | = rac{1}{2} \left(p^{-1} \langle \mathcal{K}^0 | \pm q^{-1} \langle ar{\mathcal{K}}^0 |
ight)$$

orthornormality $\langle \tilde{K}_{S} | K_{S} \rangle = \langle \tilde{K}_{L} | K_{L} \rangle = 1, \quad \langle \tilde{K}_{S} | K_{L} \rangle = \langle \tilde{K}_{L} | K_{S} \rangle = 0,$

completeness $|K_S\rangle \langle \tilde{K}_S| + |K_L\rangle \langle \tilde{K}_L| = 1$

J. P. Silva, PRD 62 (2000) 116008

$$\exp(-i\boldsymbol{H}t) = e^{-i\mu_{S}t}|K_{S}\rangle\langle\tilde{K}_{S}| + e^{-i\mu_{L}t}|K_{L}\rangle\langle\tilde{K}_{L}|$$

$$\mu_{S,L} = M_{S,L} - i/2\Gamma_{S,L}$$
: two eigenvalues of H

 \Box Experimentally, the K_S intermediate state is reconstructed via a $\pi^+\pi^-$ final state

 \Box Due to CPV in $K^0 - \overline{K}^0$ mixing, $\pi^+\pi^-$ final state arises not only from K_s , but also from K_L

The interference effect between the K_S & K_L amplitudes important for CPV!

 \Box Complete time-dependent decay amplitudes of $\tau^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}\nu_{\tau}$ decays (omitting $\langle \pi \nu_{\tau} |$):

$$\mathcal{A}(\tau^- \to K_{S,L} \to \pi^+ \pi^-) = \langle \pi^+ \pi^- | T | K_S \rangle e^{-i\mu_S t} \langle \tilde{K}_S | T | \tau^- \rangle + \langle \pi^+ \pi^- | T | K_L \rangle e^{-i\mu_L t} \langle \tilde{K}_L | T | \tau^- \rangle$$
$$= \frac{1}{2q} \Big[\langle \pi^+ \pi^- | T | K_S \rangle e^{-i\mu_S t} - \langle \pi^+ \pi^- | T | K_L \rangle e^{-i\mu_L t} \Big] \langle \underline{\bar{K}}^0 | T | \tau^- \rangle,$$

 $\mathcal{A}(\tau^+ \to K_{S,L} \to \pi^+ \pi^-) = \langle \pi^+ \pi^- | T | K_S \rangle e^{-i\mu_S t} \langle \tilde{K}_S | T | \tau^+ \rangle + \langle \pi^+ \pi^- | T | K_L \rangle e^{-i\mu_L t} \langle \tilde{K}_L | T | \tau^+ \rangle$ $= \frac{1}{2p} \Big[\langle \pi^+ \pi^- | T | K_S \rangle e^{-i\mu_S t} + \langle \pi^+ \pi^- | T | K_L \rangle e^{-i\mu_L t} \Big] \langle \underline{K^0} | T | \tau^+ \rangle,$

> the kaon decays are independent of the τ decays

2022/07/28

 $\Delta S = \Delta Q$ rule

□ Time-dependent double differential decay widths:

$$\frac{d^2\Gamma(\tau^- \to K_{S,L}\pi^-\nu_\tau \to [\pi^+\pi^-]\pi^-\nu_\tau)}{ds\,d\cos\alpha} = \frac{d^2\Gamma(\tau^- \to \bar{K}^0\pi^-\nu_\tau)}{ds\,d\cos\alpha} \frac{\Gamma(\bar{K}^0(t) \to \pi^+\pi^-)}{\pi^+\pi^-},$$
$$\frac{d^2\Gamma(\tau^+ \to K_{S,L}\pi^+\bar{\nu}_\tau \to [\pi^+\pi^-]\pi^+\bar{\nu}_\tau)}{ds\,d\cos\alpha} = \frac{d^2\Gamma(\tau^+ \to K^0\pi^+\bar{\nu}_\tau)}{ds\,d\cos\alpha} \frac{\Gamma(K^0(t) \to \pi^+\pi^-)}{\pi^+\pi^-},$$

s: the $K\pi$ invariant mass squared;

 $\Delta m = M_I - M_S$

□ Time-dependent $K(t) \rightarrow \pi^+\pi^-$ decay widths:

$$\Gamma(\bar{K}^{0}(t) \to \pi^{+}\pi^{-}) = \frac{|\langle \pi^{+}\pi^{-}|T|K_{S}\rangle|^{2}}{4|q|^{2}} \Big[e^{-\Gamma_{S}t} + |\eta_{+-}|^{2} e^{-\Gamma_{L}t} - 2|\eta_{+-}| e^{-\Gamma t}\cos(\phi_{+-} - \Delta mt)\Big]$$

$$\Gamma(K^{0}(t) \to \pi^{+}\pi^{-}) = \frac{|\langle \pi^{+}\pi^{-}|T|K_{S}\rangle|^{2}}{4|p|^{2}} \Big[e^{-\Gamma_{S}t} + |\eta_{+-}|^{2} e^{-\Gamma_{L}t} + 2|\eta_{+-}| e^{-\Gamma t} \cos(\phi_{+-} - \Delta mt) \Big]$$

$$\Gamma = \frac{\Gamma_L + \Gamma_S}{2}$$

$$\eta_{+-} = \frac{\langle \pi^+ \pi^- | T | K_L \rangle}{\langle \pi^+ \pi^- | T | K_S \rangle}$$

$$|\eta_{+-}| = (2.232 \pm 0.011) \times 10^{-3}$$

$$\phi_{+-} = (43.51 \pm 0.05)^\circ$$

Time-dep. CP asymmetry in the angular distribution:

 $(d\omega = dsd\cos\alpha)$

$$A_{i}^{CP}(t_{1},t_{2}) = \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) dt - \frac{d\Gamma^{\tau^{+}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \Gamma_{\pi^{+}\pi^{-}}(t) dt \right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) dt + \frac{d\Gamma^{\tau^{+}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \Gamma_{\pi^{+}\pi^{-}}(t) dt \right] d\omega}$$

bin choice $[s_{1,i}, s_{2,i}]$, time interval $[t_1, t_2]$, exp.-dep. effects parametrized by F(t)

□ The difference of the decay

rates weighted by $\cos \alpha$:

$$\begin{split} A_{i}^{CP}(t_{1},t_{2}) &= \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) \, dt - \frac{d\Gamma^{\tau^{+}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \Gamma_{\pi^{+}\pi^{-}}(t) \, dt \right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) \, dt + \frac{d\Gamma^{\tau^{+}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \Gamma_{\pi^{+}\pi^{-}}(t) \, dt \right] d\omega} \\ &= \frac{\left(\langle \cos \alpha \rangle_{i}^{\tau^{-}} + \langle \cos \alpha \rangle_{i}^{\tau^{+}} \right) A_{K}^{CP}(t_{1},t_{2}) + \left(\langle \cos \alpha \rangle_{i}^{\tau^{-}} - \langle \cos \alpha \rangle_{i}^{\tau^{+}} \right)}{1 + A_{K}^{CP}(t_{1},t_{2}) \cdot A_{\tau,i}^{CP}} \end{split}$$

\Box As the kaon decays independent of the τ decays, the 2nd line are obtained:

$$\langle \cos \alpha \rangle_{i}^{\tau^{+}} + \langle \cos \alpha \rangle_{i}^{\tau^{+}} = \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} + \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} + \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega} \\ \langle \cos \alpha \rangle_{i}^{\tau^{-}} - \langle \cos \alpha \rangle_{i}^{\tau^{+}} = \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} - \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} - \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega} \\ \mathbf{Within the} \\ \mathbf{SM:} \qquad \frac{d\Gamma^{\tau^{\pm}}}{d\omega} = \frac{d^{2}\Gamma(\tau^{\pm} \to K^{0}(\bar{K}^{0})\pi^{\pm}\bar{\nu}_{\tau}(\nu_{\tau}))}{\frac{d\Gamma^{\tau^{\pm}}}{d\omega} d\cos \alpha}} \qquad \mathbf{A}_{i}^{CP}(t_{1}, t_{2}) = 2 \langle \cos \alpha \rangle_{i}^{\tau^{-}} + \langle \cos \alpha \rangle_{i}^{\tau^{-}} - \langle \cos \alpha \rangle_{i}^{\tau^{-}} + \langle \cos \alpha \rangle_{i}^{\tau^{-}} + \langle \cos \alpha \rangle_{i}^{\tau^{+}} - \langle \cos \alpha \rangle_{i}^{\tau^{+}} - \langle \cos \alpha \rangle_{i}^{\tau^{+}} + \langle \cos \alpha \rangle_{i}^{\tau^{+}} - \langle \cos \alpha \rangle_{i$$

□ Results within the SM:

using the efficiency function F(t)provided by the BaBar collaboration!

$$|\eta_{+-}| \approx \frac{2\Re e(\epsilon_K)}{\sqrt{2}}, \ \phi_{+-} \approx 45^{\circ},$$

 $\Gamma \approx \frac{\Gamma_S}{2}, \ \text{and} \ \Delta m \approx \frac{\Gamma_S}{2}$

• $A_{K}^{CP}(t_{1}, t_{2})$: CPV in $K^{0} - \bar{K}^{0}$ mixing $A_{K}^{CP}(t_{1} \ll \Gamma_{S}^{-1}, \Gamma_{S}^{-1} \ll t_{2} \ll \Gamma_{L}^{-1}) \approx -2 \operatorname{Re}(\epsilon_{K}) = -(3.32 \pm 0.06) \times 10^{-3}$ Thus easily reproduce $F(t) = \begin{cases} 1 & t_{1} < t < t_{2} \\ 0 & \text{otherwise.} \end{cases}$ Y. Grossman and Y. Nir, JHEP 04 (2012) 002

• $\langle \cos \alpha \rangle^{\tau^-} = \frac{2}{3} \mathsf{A}_{\mathrm{FB}}^{\tau^-}$ L. Beldjoudi and T. N. Truong, PLB 351 (1995) 357368

$$A_{\text{FB}}^{\tau^{-}}(s) = \frac{\int_{0}^{1} \frac{d^{2}\Gamma^{\tau^{-}}}{ds \, d \cos \alpha} d \cos \alpha - \int_{-1}^{0} \frac{d^{2}\Gamma^{\tau^{-}}}{ds \, d \cos \alpha} d \cos \alpha}{\int_{0}^{1} \frac{d^{2}\Gamma^{\tau^{-}}}{ds \, d \cos \alpha} d \cos \alpha + \int_{-1}^{0} \frac{d^{2}\Gamma^{\tau^{-}}}{ds \, d \cos \alpha} d \cos \alpha}$$

Even in the SM, there is non-zero CPA in the angular distributions due to CPV in $K^0 - \overline{K}^0$ mixing

forward-backward asymmetry

2.8
$$\sigma$$
 偏差
$$\begin{cases} A_{\rm CP}^{\rm Exp} = (-3.6 \pm 2.3 \pm 1.1) \times 10^{-3} \\ A_{\rm CP}^{\rm SM} = (3.6 \pm 0.1) \times 10^{-3} \end{cases}$$

using the efficiency function F(t)provided by the BaBar collaboration! [BaBar, PRD 85 (2012) 031102]

2022/07/28

□ Puzzle still

exists:

Results within the SM:

 $A_i^{CP}(t_1, t_2) = 2 \langle \cos \alpha \rangle_i^{\tau^-} A_K^{CP}(t_1, t_2)$

 $A_K^{\text{CP}}(t_1 \ll \Gamma_S^{-1}, \Gamma_S^{-1} \ll t_2 \ll \Gamma_L^{-1}) \approx -2\text{Re}(\epsilon_K) = -(3.32 \pm 0.06) \times 10^{-3}$ as input!

□ Angular observable $\langle \cos \alpha \rangle_{i}^{\tau^{\pm}}$:

D Hadronic FFs: $\left\langle \bar{K}^{0}(p_{K})\pi^{-}(p_{\pi}) \left| \bar{s}\gamma^{\mu}u \right| 0 \right\rangle = \left[(p_{K} - p_{\pi})^{\mu} - \frac{\Delta_{K\pi}}{s}q^{\mu} \right] F_{+}(s) + \frac{\Delta_{K\pi}}{s}q^{\mu}F_{0}(s)$

\Box For $K\pi$ FFs, we adopt:

As the Breit-Wigner form violates Watson's theorem, and thus not physical and not applicable for CPV!

[Belle, PLB 654 (2007) 65]

• Vector form factor thrice-subtracted dispersion representation D.R. Boito, R. Escribano and M. Jamin, Eur. Phys. J. C59 (2009) 821

$$F_{+}(s) = \exp\left\{\lambda'_{+}\frac{s}{M_{\pi^{-}}^{2}} + \frac{1}{2}(\lambda''_{+} - \lambda'_{+}^{2})\frac{s^{2}}{M_{\pi^{-}}^{4}} + \frac{s^{3}}{\pi}\int_{s_{K\pi}}^{s_{cut}} ds'\frac{\delta_{+}(s')}{(s')^{3}(s'-s-i\epsilon)}\right\}$$

• Scalar form factor coupled-channel dispersive representation M. Jamin, J.A. Oller and A. Pich, Nucl. Phys. B622 (2002) 279

$$F_0^1(s) = \frac{1}{\pi} \sum_{j=1}^3 \int_{s_j}^{\infty} ds' \frac{\sigma_j(s') F_0^j(s') t_0^{1 \to j}(s')^*}{s' - s - i\epsilon}, (1 \equiv K\pi, 2 \equiv K\eta, \text{ and } 3 \equiv K\eta')$$

Angular observable: differential decay width weighted by $\cos \alpha$

$$\begin{split} \langle \cos \alpha \rangle^{\tau^{-}}(s) &= \frac{\int_{-1}^{1} \cos \alpha \left(\frac{d^{2} \Gamma^{\tau^{-}}}{ds \, d \cos \alpha}\right) d \cos \alpha}{\int_{-1}^{1} \left(\frac{d^{2} \Gamma^{\tau^{-}}}{ds \, d \cos \alpha}\right) d \cos \alpha} \\ &= \frac{-2\Delta_{K\pi} \Re e[\tilde{F}_{+}(s)\tilde{F}_{0}^{*}(s)]\lambda^{1/2}\left(s, M_{K}^{2}, M_{\pi}^{2}\right)}{\left|\tilde{F}_{+}(s)\right|^{2} \left(1 + \frac{2s}{m_{\tau}^{2}}\right)\lambda\left(s, M_{K}^{2}, M_{\pi}^{2}\right) + 3\Delta_{K\pi}^{2} \left|\tilde{F}_{0}(s)\right|^{2}} \end{split}$$

2022/07/28

15

\Box Results for $A_i^{CP}(t_1, t_2)$ in four mass bins:

Belle Collaboration, PRL 107 (2011) 131801 $A_{\text{SM},i}^{\text{CP}}$ [10⁻³] $A_{\exp,i}^{CP}$ [10⁻³] $\sqrt{s} \, [\text{GeV}]$ n_i/N_s [%] 0.625 - 0.890 0.39 ± 0.01 $7.9 \pm 3.0 \pm 2.8$ 36.53 ± 0.14 0.890 - 1.110 0.04 ± 0.01 $1.8 \pm 2.1 \pm 1.4$ 57.85 ± 0.15 1.110 - 1.420 0.12 ± 0.02 $-4.6 \pm 7.2 \pm 1.7$ 4.87 ± 0.04 1.420 - 1.775 0.27 ± 0.05 $-2.3 \pm 19.1 \pm 5.5$ 0.75 ± 0.02

SM predictions still below Belle detection sensitivity of $\mathcal{O}(10^{-3})$, but expected to be detectable at Belle II, with $\sqrt{70}$ times more

Two more optimal SM predictions:

 $\int A_{\rm CP}^{\rm Exp} = (-3.6 \pm 2.3 \pm 1.1) \times 10^{-3}$ as large as the SM prediction for $A_{\rm CP}^{\rm SM} = (3.6 \pm 0.1) \times 10^{-3}$ the decay-rate asymmetry!

 $A_i^{CP}(t_1, t_2) = \begin{cases} (3.06 \pm 0.06) \times 10^{-3}, & 0.70 \,\text{GeV} < \sqrt{s} < 0.75 \,\text{GeV} \\ (1.38 \pm 0.18) \times 10^{-3}, & 1.40 \,\text{GeV} < \sqrt{s} < 1.50 \,\text{GeV} \end{cases}$

 \Box Suggest to measure A_i^{CP} in these two mass intervals!

sensitive results!

 $\tau^{\pm} \rightarrow K^0(\overline{K}^0)\pi^{\pm}\overline{\nu}_{\tau}(\nu_{\tau})$ withinin a general EFT

□ When NP presents

 $\mathcal{A}(au^+ o K^0 \pi^+ ar{
u}_ au)
eq \mathcal{A}(au^- o ar{K}^0 \pi^-
u_ au)$

in tau decays:

$$\frac{d\Gamma^{\tau^+}}{d\omega} \neq \frac{d\Gamma^{\tau^-}}{d\omega} \Longrightarrow A^{CP}_{\tau,i} \neq 0, \quad \langle \cos \alpha \rangle^{\tau^-}_i \neq \langle \cos \alpha \rangle^{\tau}_i$$

CPA in angular distribution:

$$A_i^{\rm CP} \simeq \left(\langle \cos \alpha \rangle_i^{\tau^-} + \langle \cos \alpha \rangle_i^{\tau^+} \right) A_K^{\rm CP} + \left(\langle \cos \alpha \rangle_i^{\tau^-} - \langle \cos \alpha \rangle_i^{\tau^+} \right)$$

D The most general $SU(3)_{\mathcal{C}} \otimes U(1)_{em}$ -invariant low-energy effective Lagrangian:

$$\mathcal{L}_{ ext{eff}} = - \, rac{\mathcal{G}_{ extsf{F}} \, oldsymbol{V}_{us}}{\sqrt{2}} \left\{ ar{ au} \gamma_{\mu} (1 - \gamma_5)
u_{ au} \cdot ar{u} \left[\gamma^{\mu} - (1 - 2 \, \hat{\epsilon}_R) \gamma^{\mu} \gamma_5
ight] s
ight\}$$

$$+ \,\bar{\tau}(1-\gamma_5)\nu_{\tau}\cdot\bar{u}\left[\hat{\epsilon}_S-\hat{\epsilon}_P\gamma_5\right]s+2\,\hat{\epsilon}_T\,\bar{\tau}\sigma_{\mu\nu}(1-\gamma_5)\nu_{\tau}\cdot\bar{u}\sigma^{\mu\nu}s\Big\}+\text{h.c.}$$

 \Box Decay amplitude for $\tau^- \rightarrow \overline{K}^0 \pi^- \nu_{\tau}$:

scalar operator + tensor operator

$$\mathcal{M} = \mathcal{M}_{V} + \mathcal{M}_{S} + \mathcal{M}_{T}$$
$$= \frac{G_{F}V_{us}}{\sqrt{2}} \left[L_{\mu}H^{\mu} + \hat{\epsilon}_{S}^{*}LH + 2\hat{\epsilon}_{T}^{*}L_{\mu\nu}H^{\mu\nu} \right]$$

Tensor form factors

Leptonic currents:

 $L = \bar{u}(p_{\nu_{\tau}})(1 + \gamma_{5})u(p_{\tau}),$ $L_{\mu} = \bar{u}(p_{\nu_{\tau}})\gamma_{\mu}(1 - \gamma_{5})u(p_{\tau}),$ $L_{\mu\nu} = \bar{u}(p_{\nu_{\tau}})\sigma_{\mu\nu}(1 + \gamma_{5})u(p_{\tau}),$

□ Tensor FF $F_T(s)$: due to lack of enough exp. data, has to be constructed theoretically

□ Hadronic matrix elements:

$$H = \langle \pi^{-}\overline{K}^{0} | \overline{s}u | 0 \rangle = F_{S}(s)$$

$$H^{\mu} = \langle \pi^{-}\overline{K}^{0} | \overline{s}\gamma^{\mu}u | 0 \rangle = Q^{\mu}F_{+}(s) + \frac{\Delta_{\kappa\pi}}{s}q^{\mu}F_{0}(s)$$

$$H^{\mu\nu} = \langle \pi^{-}\overline{K}^{0} | \overline{s}\sigma^{\mu\nu}u | 0 \rangle = iF_{T}(s) \left(p_{\kappa}^{\mu}p_{\pi}^{\nu} - p_{\pi}^{\mu}p_{\kappa}^{\nu}\right)$$

$$F_T(s) = F_T(0) \exp\left\{\frac{s}{\pi} \int_{s_{K\pi}}^{\infty} ds' \frac{\delta_T(s')}{s'(s'-s-i\epsilon)}\right\}$$

> for $F_T(0)$: obtained from the lowest chiral order of χPT with tensor source

•
$$\mathcal{L}_{4}^{\chi \mathsf{PT}} = \Lambda_1 \langle t_+^{\mu\nu} f_{+\mu\nu} \rangle - i\Lambda_2 \langle t_+^{\mu\nu} u_\mu u_\nu \rangle + \Lambda_3 \langle t_+^{\mu\nu} t^{+\mu\nu} \rangle + \Lambda_4 \langle t_+^{\mu\nu} \rangle^2$$

$$\left\langle \bar{K}^{0}(p_{K})\pi^{-}(p_{\pi}) \left| \frac{\delta L_{4}^{\chi \text{PT}}}{\delta \bar{t}_{\mu\nu}} \right| 0 \right\rangle = i \frac{\Lambda_{2}}{F_{\pi}^{2}} (p_{K}^{\mu} p_{\pi}^{\nu} - p_{K}^{\nu} p_{\pi}^{\mu}) \Longrightarrow$$

$$F_T(0) = \Lambda_2 / F_\pi^2$$
, with $\Lambda_2 = (11.1 \pm 0.4)$ MeV

I. Baum et al., PRD 84 (2011) 074503

李新强 华中师大 CP asymmetries in tau -> K_S pi nu decays

 χPT

O. Cata and V. Mateu, JHEP 09 (2007) 078

Tensor form factors

□ With $s \in [(M_K + M_\pi)^2, m_\tau^2]$, light resonances to FFs must be included to give *s*-dep. of FFs

□ As spin-1 resonances described equivalently by vector or anti-symmetric tensor fields, resonance contributions to $F_+(s)$ & $F_T(s)$ are both dominated by $K^*(892)$ & $K^*(1410)$

> $F_T(s)$ obtained with $R\chi T$ including spin-1 resonances:

•
$$\mathcal{L}_{6}^{\mathsf{R}\chi\mathsf{T}} = \mathcal{L}_{kin}(\hat{V}_{\mu}) - \frac{1}{2\sqrt{2}} \left(f_{V} \langle \hat{V}_{\mu\nu} f_{+}^{\mu\nu} \rangle + ig_{V} \langle \hat{V}_{\mu\nu} [u^{\mu}, u^{\nu}] \rangle \right) - f_{V}^{T} \langle \hat{V}_{\mu\nu} t_{+}^{\mu\nu} \rangle$$

Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael, PLB 223 (1989) 425

$$F_{T}(s) = \frac{\Lambda_{2}}{F_{\pi}^{2}} \left[1 + \frac{\sqrt{2}f_{V}^{T}g_{V}}{\Lambda_{2}} \frac{s}{M_{K^{*}}^{2} - s} + \frac{\sqrt{2}f_{V}^{T'}g_{V}'}{\Lambda_{2}} \frac{s}{M_{K^{*'}}^{2} - s} \right]$$

= $\frac{\Lambda_{2}}{F_{\pi}^{2}} \left[\frac{M_{K^{*}}^{2} + \beta s}{M_{K^{*}}^{2} - s} - \frac{\beta s}{M_{K^{*'}}^{2} - s} \right]$ energy-dep. width $\gamma_{n}(s)$

 $\beta = \frac{\sqrt{2}f_V^* g_V}{\Lambda_2} - 1 \simeq \pm 0.75\gamma$: characterizes relative weight of

 $\Lambda_2 \qquad \qquad \text{Feng-Zhi Chen, Xin-Qiang Li, Ya-Dong Yang,}$ the two resonances, and plays the same role as γ for $F_+(s)$ Xin Zhang, PRD 100 (2019) 113006

 $\tilde{F}_T(s) = \frac{F_T(s)}{F_T(0)}$

 $=\frac{M_{K^*}^2-\kappa_{K^*}\widetilde{H}_{K\pi}(0)+\beta s}{----}$

2022/07/28

新强 华中师大 CP asymmetries in tau -> K_S pi nu decays

required by Watson's FSI theorem [K. M. Watson, Phys. Rev. 95 (1954) 228]

➤ in inelastic region (above ~ 1.2 GeV), $\delta_T(s)$ and $\delta_+(s)$ start to behave differently due to the different relative weights of the two resonances $K^*(892) \& K^*(1410)$

2022/07/28

 $\tilde{F}_+(s)$

 $\tilde{F}_T(s)_{\beta=+0.75\gamma}$

1.6

1.8

--- $\tilde{F}_T(s)_{\beta=-0.75\gamma}$

1.4

1.2

 \sqrt{s} [GeV]

CP-violating observables in general EFT

Decay-rate asymmetry:

 $A_{\rm CP}^{\rm rate}(\tau \to K \pi \nu_{\tau}) = \frac{\Gamma(\tau^+ \to K^0 \pi^+ \bar{\nu}_{\tau}) - \Gamma(\tau^- \to \bar{K}^0 \pi^- \nu_{\tau})}{\Gamma(\tau^+ \to K^0 \pi^+ \bar{\nu}_{\tau}) + \Gamma(\tau^- \to \bar{K}^0 \pi^- \nu_{\tau})}$ $= \frac{\mathrm{Im}[\hat{\epsilon}_T] G_F^2 |V_{us}|^2 S_{\mathrm{EW}}}{128 \,\pi^3 \, m_\tau^2 \, \Gamma(\tau \to K_S \pi \nu_\tau)} \, \int_{s_{K\pi}}^{m_\tau^2} ds \left(1 - \frac{m_\tau^2}{s}\right)^2 \, \lambda^{\frac{3}{2}} \left(s, M_K^2, M_\pi^2\right)$ Only vector-tensor interference

 $\times |F_T(s)| |F_+(s)| \sin \left[\delta_T(s) - \delta_+(s)\right] ,$

CPA in angular distribution:

as the only possible mechanism

Both from scalar-vector and vector-tensor interferences

$$egin{aligned} &A_{CP}^i\simeq&\Delta_{K\pi}\,S_{\mathrm{EW}}\,rac{N_s}{n_i}\int_{s_{1,i}}^{s_{2,i}}\left\{-rac{\mathrm{Im}[\hat{\epsilon}_S]}{m_ au(m_s-m_u)}\,\mathrm{Im}\,[F_+(s)F_0^*(s)]-rac{2\mathrm{Im}[\hat{\epsilon}_T]}{m_ au}\,\mathrm{Im}\,[F_ au(s)F_0^*(s)]
ight.\ &+\left[\left(rac{1}{s}+rac{\mathrm{Re}[\hat{\epsilon}_S]}{m_ au(m_s-m_u)}
ight)\,\mathrm{Re}\,[F_+(s)F_0^*(s)]-rac{2\mathrm{Re}[\hat{\epsilon}_T]}{m_ au}\,\mathrm{Re}[F_ au(s)F_0^*(s)]
ight]A_{K}^{CP}
ight\}C(s)\,ds\,. \end{aligned}$$

 \Box Constraints on Re[$\hat{\epsilon}_{S,T}$]: more stringent from decay rates of various exclusive τ decays

 $\operatorname{Re}[\hat{\epsilon}_{S}] = (0.8^{+0.8}_{-0.9} \pm 0.3)\%, \operatorname{Re}[\hat{\epsilon}_{T}] = (0.9 \pm 0.7 \pm 0.4)\%$ S. Gonzàlez-Solís, A. Miranda, J. Rendón and P. Roig, Phys. Lett. B 804 (2020) 135371

 \Box Constraints on Im[$\hat{\epsilon}_{S,T}$]: more sensitive to these CP-violating observables

CP-violating observables in general EFT

 \Box Fit results on Im[$\hat{\epsilon}_{S,T}$] from $\mathcal{B}_{\exp}^{\tau}$ and four bins of $A_{\exp,i}^{CP}$:

- \succ remarkably negative correlation between Im[$\hat{\epsilon}_{s}$] & Im[$\hat{\epsilon}_T$], as both vector & tensor FFs dominated by $K^*(892)$ and $K^*(1410)$, and thus have almost the same phases, especially in elastic region
- > bound on $\text{Im}[\hat{\epsilon}_S]$ consistent with $|\text{Im}(\eta_S)| < 0.026$ @ 90% C.L. obtained by Belle [PRL 107 (2011) 131801]
- > upper bound on $\text{Im}[\hat{\epsilon}_T]$ only of $\mathcal{O}(10^{-1})$, much weaker than $2|\text{Im}[\hat{\epsilon}_T]| \leq 10^{-5}$ from neutron EDM & $D^0 - \overline{D}^0$ mixing [V. Cirigliano *et al.*, PRL 120 (2018) 141803]

CP-violating observables in general EFT

$\square A_i^{CP}$ in the presence of non-standard scalar & tensor interactions

- ▶ with best-fit values of $\text{Im}[\hat{\epsilon}_S]$ and $\text{Im}[\hat{\epsilon}_T]$, the CPA distributions have almost the same magnitude but opposite in sign in whole $K\pi$ invariant-mass region
- > the maximum absolute values are reached at around $\sqrt{s} = 1.2 \text{ GeV}$ for both cases
- the non-standard scalar & tensor contributions about one order of magnitude larger than SM prediction

□ We strongly recommend to make more precise studies of CP asymmetry in the angular distributions, especially at Belle II & SCTF,

Belle-II, *PTEP* **2019** (2019) 123C01; H. Sang, X. Shi, X. Zhou, X. Kang and J. Liu, *CPC* **45** (2021) 053003

Summary

$\Box \tau \rightarrow K_S \pi \nu_\tau$ decays: very promising for searching CPV effects

only $\tau \to K_{\rm S} \pi \nu_{\tau}$

- ▶ in the SM, there exist non-zero decay-rate asymmetry & CP asymmetry in angular distribution due to CPV in $K^0 \overline{K}^0$ mixing, with results of $O(10^{-3})$ and detectable @ Belle II & STCF, ...
- With a general EFT, only vector-tensor interference produces a direct decay-rate asymmetry, while both scalar-vector & vector-tensor interferences possible for CPAs in angular distribution

 $Im[\hat{\epsilon}_S] = -0.008 \pm 0.027, \quad Im[\hat{\epsilon}_S] \in [-3.1, 1.6] \times 10^{-4} @ 2\sigma$ $Im[\hat{\epsilon}_T] = 0.03 \pm 0.12, \qquad |Im[\hat{\epsilon}_T]| \leq 4 \times 10^{-6}$

For NP well above v_{EW} , constraints from $\tau \rightarrow K_S \pi v_{\tau}$ much less stringent than from $d_n \& D^0 - \overline{D}^0$ mixing

SMEFT

 \Box The BaBar 2.8 σ deviation for A_{CP}^{rate} not easily explained by heavy NP !

 \overline{c} \overline{u} \overline{u} \overline{c} \overline{u} \overline{c} \overline{c} \overline{c}

2022/07/28

李新强 华中师大 CP asymmetries in tau -> K_S pi nu decays

□ Predictions for CP asymmetry in the angular distribution in three different cases:

constraint only from tau decays

constraints from d_n and $D^0 - \overline{D}^0$ mixing

□ We strongly suggest to measure these observables more precisely @ Belle II & STCF! Thank you for your attention!

Backup

Experimental facilities for tau physics

□ Many dedicated facilities, with large tau samples [C. Z. Yuan, talk @ IAS Program on HEP 2021]

Experiment	Integrated luminosity (fb ⁻¹)	Cross section (nb)	Number of produced τ pairs (10 ⁹)	Typical tag efficiency	Tagged τ pairs (10 ⁹)	Fraction of Non-τ background
BESIII	50	$0\sim 3.6$	~ 0.15	10%	0.015	<1%
BaBar+Belle	1,500	0.9	1.35	33%	0.45	8%
LEP (ALEPH, DELPHI, L3, OPAL)	0.20×4	1.5	0.0012	79% (ALEPH), 92% within cosθ <0.90	0.0007	1.2% (ALEPH)
STCF/SCT	10,000	2.5	25	10%=BESIII	1.5	<1%=BESIII
Belle II	50,000	0.9	45	33%=Belle	15	8%=Belle
CEPC	45,000	1.5	70	87% (^10% over ALEPH)	60	<1.2%@ALEPH
FCC-ee	115,000	1.5	170	87% (10% over ALEPH)	150	<1.2%@ALEPH

□ Lots of tau physics programs with these large tau samples: see *biennial tau workshop!*

Super Tau-Charm Facility (STCF) in China

- Peaking luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range E_{cm} = 2-7 GeV
- Potential to increase luminosity and realize beam polarization
- A nature extension and a viable option for China accelerator project in the post BEPCII/BESIII era

expected to have higher detection efficiency and low backgrounds for productions at threshold

excellent resolution, kinematic constraining

L ab⁻¹ data expected per year

Xiaoru Zhou, talk @ charm 2020

- rich of physics program, unique for physics with c quark and τ leptons,
- important playground for study of QCD, exotic hadrons, flavor and search for new physics.

Physics @ a STCF in a nutshell

Two-meson semi-leptonic tau decays

\Box Invariant mass distribution of $\tau^- \rightarrow P^- P^0 \nu_{\tau}$ decay:

□ What do we know theoretically about these FFs?

- > their low-energy behaviors: given by χ PT [Gasser and Leutwyler, Annals Phys. 158 (1984) 142]
- > their high-energy behaviors ($\sim 1/s$): given by pQCD [Brodsky and Lepage, PLB 87 (1979) 359]
- > for the intermediate energy region: models

For vector FF: thrice-subtracted dispersion representation

$$F_V^{\pi}(s) = \exp\left[\alpha_1 s + \frac{\alpha_2}{2}s^2 + \frac{s^3}{\pi}\int_{4m_{\pi}^2}^{s_{\text{cut}}} ds' \frac{\phi(s')}{(s')^3(s'-s-i\varepsilon)}\right]$$

 ν_{τ}

 $d' = V_{ud}d + V_{ues}s$

$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ decay as an example

□ For vector FF: thrice-subtracted dispersion representation:

$$F_V^{\pi}(s) = \exp\left[\alpha_1 s + \frac{\alpha_2}{2}s^2 + \frac{s^3}{\pi}\int_{4m_{\pi}^2}^{s_{\text{cut}}} ds' \frac{\phi(s')}{(s')^3(s'-s-i\varepsilon)}\right]$$

\Box Form-factor phase $\phi(s)$:

\Box Form-factor modulus squared $|F_V^{\pi}(s)|^2$:

Information on	Resonance	Model parameter (<i>M</i> , Γ) [MeV]	Pole position (<i>M</i> , Г) [MeV
the resonances:	$\rho(1450)$	1376(6), 603(22) 1718(4), 465(9)	1289(8), 540(16) 1673(4), 445(8)
	<i>p</i> (1700)	1710(4); 403(9)	10/3(4), 443(0)

2022/07/28

□ Information on

s [GeV^2]

Constraints on $Im[\hat{\epsilon}_{S,T}]$ from other processes □ If BSM interactions originate from a weakly-coupled heavy NP well above the EW scale SU(2)_L invariance of \mathcal{L}_{eff} implies other processes to put further limits on $\text{Im}[\hat{\epsilon}_{S,T}]$ $\mathcal{L}_{\text{SMEFT}} \supset [C_{\ell equ}^{(3)}]_{klmn} (\bar{\ell}_{Lk}^{i} \sigma_{\mu\nu} e_{Rl}) \epsilon^{ij} (\bar{q}_{Lm}^{j} \sigma^{\mu\nu} u_{Rn}) + \text{h.c.}$ **For tensor operator:** $[C_{\ell equ}^{(3)}]_{klmn} [(\bar{\nu}_{Lk}\sigma_{\mu\nu}e_{Rl})(\bar{d}_{Lm}\sigma^{\mu\nu}u_{Rn}) - V_{am}(\bar{e}_{Lk}\sigma_{\mu\nu}e_{Rl})(\bar{u}_{La}\sigma^{\mu\nu}u_{Rn})] + \text{h.c.}$ τ $\tau \rightarrow K_S \pi \nu_{\tau}$ & neutron EDM share the same WC: $d_u(\mu) = -2\sqrt{2}G_F \,\frac{em_\tau}{\pi^2} \,V_{us}^2 \,\mathrm{Im}[\hat{\epsilon}_T(\mu)] \log \frac{\Lambda}{\mu}$ $[C_{\ell equ}^{(3)}]_{3321} = -2\sqrt{2}G_F V_{us}\hat{\epsilon}_T^*$ Assuming the neutron EDM receives contribution only from $\hat{\epsilon}_T$, we get:

 $|d_n = g_T^u(\mu)d_u(\mu)| < 1.8 \times 10^{-26}e \text{ cm} \implies |\text{Im}[\hat{\epsilon}_T]| \le \frac{1.5 \times 10^{-5}}{\ln\left(\frac{\Lambda}{\mu_\tau}\right)} \le 4 \times 10^{-6} \text{ for } \Lambda \ge 100 \text{GeV } \& \mu_\tau = 2 \text{GeV}$ nEDM collaboration, PRL 124 (2020) 081803 $A_{CP}^i|_{\text{Max}} \sim \mathcal{O}(10^{-6}) \qquad \text{strongest limit obtained so far!}$

Caution: tensor operator $(\bar{\tau}\sigma_{\mu\nu}\tau_R)(\bar{u}_L\sigma^{\mu\nu}u_R)$ can also associate with the WC combination

 $V_{ud} \operatorname{Im}[C_{\ell equ}^{(3)}]_{3311} + V_{us} \operatorname{Im}[C_{\ell equ}^{(3)}]_{3321} = 2\sqrt{2}G_F \left(V_{ud}^2 \operatorname{Im}[\epsilon_T]_{3311} + V_{us}^2 \operatorname{Im}[\epsilon_T]_{3321}\right)$

 $d_u(\mu) = -2\sqrt{2}G_F \,\frac{em_\tau}{\pi^2} \left(V_{ud}^2 \,\mathrm{Im}[\epsilon_T]_{3311} + V_{us}^2 \,\mathrm{Im}[\epsilon_T]_{3321} \right) \log \frac{\Lambda}{\mu}$

> when delicate cancellation exists between them, stringent limit on $Im[\hat{e}_T]$ can be diluted

□ In this case, another interesting constraint on $(\bar{\tau}\sigma_{\mu\nu}\tau_R)(\bar{c}_L\sigma^{\mu\nu}u_R)$ from $D^0 - \bar{D}^0$ mixing: $V_{cd}[C_{\ell equ}^{(3)}]_{3311} + V_{cs}[C_{\ell equ}^{(3)}]_{3321} = V_{ud}V_{cd}[\epsilon_T]_{3311} + V_{us}V_{cs}[\epsilon_T]_{3321}$ double insertion $M_{12}^{NP} = \frac{1}{2M_D} \Big[C_2'(\mu) \langle D^0 | (\bar{c}_L^{\alpha}u_R^{\alpha}) (\bar{c}_L^{\beta}u_R^{\beta}) | \bar{D}^0 \rangle (\mu) + C_3'(\mu) \langle D^0 | (\bar{c}_L^{\alpha}u_R^{\beta}) (\bar{c}_L^{\beta}u_R^{\alpha}) | \bar{D}^0 \rangle (\mu) \Big]$ $C_2' = \frac{1}{2}C_3' = 16G_F^2 \frac{m_\tau^2}{\pi^2} (V_{ud}V_{cd}[\epsilon_T]_{3311} + V_{us}V_{cs}[\epsilon_T]_{3321})^2 \log \frac{\Lambda}{\mu_\tau}$ $x_{12} = \frac{2|M_{12}|}{\Gamma_D} = (0.409 \pm 0.048)\%, \quad \phi_{12} = \arg\left(\frac{M_{12}}{\Gamma_{12}}\right) = (0.58^{+0.91}_{-0.90})^0$ we can get further constraint on $\operatorname{Im}[\hat{\epsilon}_T]$!

\Box Combined constraints from d_n and $D^0 - \overline{D}^0$ mixing:

 $|\mathrm{Im}[\hat{\epsilon}_T]| \lesssim 4 \times 10^{-6}$

D Prediction for CPA with $|\text{Im}[\epsilon_T]| = 5 \times 10^{-3}$: still has a significant impact on the CPA!

□ For scalar operator: originate from the following two SMEFT operators

> constraint on $\hat{\epsilon}_s$ can be obtained from other processes;

> when potential cancellations exist between $C_{\ell equ}^{(1)} \& C_{\ell edq}$, allowed values of $\hat{\epsilon}_{s}$ can be diluted

Mixing between scalar and tensor operators:

$$\hat{\epsilon}_S = -\frac{[C_{\ell equ}^{(1)}]_{3321}^*}{2\sqrt{2}G_F V_{us}}, \qquad \hat{\epsilon}_T = -\frac{[C_{\ell equ}^{(3)}]_{3321}^*}{2\sqrt{2}G_F V_{us}}$$

$$\begin{pmatrix} \hat{\epsilon}_S \\ \hat{\epsilon}_T \end{pmatrix}_{(\mu=2 \text{ GeV})} = \begin{pmatrix} 1.72 & -0.0242 \\ -2.17 \times 10^{-4} & 0.825 \end{pmatrix} \begin{pmatrix} \hat{\epsilon}_S \\ \hat{\epsilon}_T \end{pmatrix}_{(\mu=m_Z)} , \quad \begin{pmatrix} C_{\ell equ}^{(1)} \\ C_{\ell equ}^{(3)} \\ C_{\ell equ}^{(3)} \end{pmatrix}_{(\mu=m_Z)} = \begin{pmatrix} 1.20 & -0.185 \\ -0.00381 & 0.959 \end{pmatrix} \begin{pmatrix} C_{\ell equ}^{(1)} \\ C_{\ell equ}^{(3)} \\ C_{\ell equ}^{(3)} \end{pmatrix}_{(\mu=1 \text{ TeV})}$$

Caution: once cancellations occur, bounds diluted: $V_{ud} \text{Im}[C_{\ell equ}^{(1)}]_{3311} + V_{us}[C_{\ell equ}^{(1)}]_{3321}$ (for d_n),

D Predictions for CPA with $\text{Im}[\hat{\epsilon}_{s}(\mu_{\tau})] = -3 \times 10^{-4}$: slightly smaller than the SM prediction