# 重味重子物理研究的机遇



### 第四届重味物理与量子色动力学研讨会,2022.07.28 @ 湖南大学, online



医序题为

- Why baryon physics? Opportunities of baryon physics
- Recent progresses: PQCD, LCSR
- Prospects: LCDA and others
- Summary

Sorry for not covering all the recent progresses due to the limited time.

# Outline



### **Baryon physics**

- •The visible matter of the Universe is mainly made of baryons.
- •Baryons play an important role in the evolution of the Universe, such as baryogenesis and big-bang nucleosythesis.



| 周期 | I <b>A</b><br>1                              |                                              |                                                                | -                                                                     | 元                                                              | 素                                                              | 周                                                              | 其                                                              | J    |
|----|----------------------------------------------|----------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------|
|    | i H                                          |                                              |                                                                |                                                                       |                                                                |                                                                |                                                                |                                                                |      |
| 1  | 氢<br>1s <sup>1</sup><br>1.008                | П <mark>А</mark><br>2                        | 原一元                                                            | 子序数 一<br>素名称                                                          | -92                                                            | U - j                                                          | 元素符号,<br>旨放射性元                                                 | 红色<br>記素                                                       |      |
| 2  | <b>3 Li</b><br>锂<br>2s <sup>i</sup><br>6.941 | <b>4 Be</b><br>铍<br>2s <sup>2</sup><br>9.012 | 注人                                                             | * 的是 一<br>造元素                                                         | <u>新</u><br>5f <sup>3</sup> 6d <sup>1</sup> 7<br>238.0         | s <sup>2</sup> — 外 <br>指<br>) — 相<br>据                         | 围电子层排<br>可能的电子<br>对原子质量<br>为该放射性                               | ⊧布,括号<br>←层排布<br>量(加括号<br>ἑ元素半衰                                | 的其   |
| 3  | 11 Na<br>钠<br>3s <sup>1</sup><br>22.99       | 12 Mg<br>镁<br>3s <sup>2</sup><br>24.31       | Ш <mark>В</mark><br>3                                          | IV <mark>B</mark> 4                                                   | VB<br>5                                                        | VIB<br>6                                                       | 司位素的局<br>VIIB<br>7                                             | 6量数)<br>8                                                      |      |
| 4  | <b>19 K</b><br>钾<br>4s <sup>1</sup><br>39.10 | 20 Ca<br>钙<br>48 <sup>2</sup><br>40.08       | 21 Sc<br>钪<br><sup>3d<sup>1</sup>4s<sup>2</sup></sup><br>44.96 | <b>22 Ti</b><br>钛<br><sup>3d<sup>2</sup>4s<sup>2</sup></sup><br>47.87 | 23 V<br>钒<br><sup>3d<sup>3</sup>4s<sup>2</sup></sup><br>50.94  | 24 Cr<br>铬<br><sup>3d<sup>3</sup>4s<sup>1</sup></sup><br>52.00 | 25 Mn<br>猛<br><sup>3d<sup>5</sup>4s<sup>2</sup></sup><br>54.94 | 26 Fe<br>铁<br><sup>3d<sup>6</sup>4s<sup>2</sup></sup><br>55.85 | 2 43 |
| 5  | 37 Rb<br>铷<br>5s <sup>1</sup><br>85.47       | 38 Sr<br>锶<br>5s <sup>2</sup><br>87.62       | 39 Y<br>纪<br><sup>4d<sup>1</sup>5s<sup>2</sup></sup><br>88.91  | 40 Zr<br>結<br><sup>4d<sup>2</sup>5s<sup>2</sup></sup><br>91.22        | 41 Nb<br>铌<br><sup>4d<sup>4</sup>5s<sup>1</sup></sup><br>92.91 | <b>42 Mo</b><br>钼<br>4d <sup>5</sup> 5s <sup>1</sup><br>95.94  | 43 Tc<br>锝<br>4d <sup>3</sup> 5s <sup>2</sup><br>[98]          | <b>44 Ru</b><br>钌<br>4d <sup>7</sup> 5s <sup>1</sup><br>101.1  | 4    |
| 6  | 55 Cs<br>铯<br>132.9                          | 56 Ba<br>钡<br>137.3                          | <b>57~71</b><br>La~Lu<br>镧系                                    | 72 Hf<br>给<br><sup>5d26s2</sup><br>178.5                              | 73 Ta<br>但<br><sup>5d<sup>3</sup>6s<sup>2</sup></sup><br>180.9 | 74 W<br>钨<br><sup>5d46s<sup>2</sup></sup><br>183.8             | <b>75 Re</b><br>铼<br>5d <sup>3</sup> 6s <sup>2</sup><br>186.2  | 76 Os<br>俄<br><sup>5년%6s<sup>2</sup></sup><br>190.2            | 1    |
| 7  | 87 Fr<br>钫<br>[223]                          | 88 Ra<br>镭<br>[226]                          | 89~103<br>Ac~Lr<br>锕系                                          | 104 Rf<br>好*<br>(6d <sup>2</sup> 7s <sup>2</sup> )<br>〔261〕           | 105 Db<br>钳*<br>(6d <sup>3</sup> 7s <sup>2</sup> )<br>[262]    | 106 Sg<br>僖*                                                   | 107 Bh<br>锁*                                                   | 108 Hs<br>镙*                                                   | 1    |

### HADRONS MESON BARYON







# **CP** violation in baryons

- Sakharov conditions for Baryogenesis:
  - 1) **baryon** number violation
  - 2) C and <u>CP violation</u>
  - 3) out of thermal equilibrium

### • CPV: SM < BAU. => new source of CPV, NP

- CPV is the most important issue in heavy flavor physics
- CPV well established in K, B and D mesons, **but CPV never established in any baryon**
- Key goal is to predict and search for baryon CPV











• LHCb is a **baryon factory** !!



- LHCb is a **baryon factory** !! La
- •CPV evidence:  $3\sigma$  in  $\Lambda_h^0 \to p\pi^-\pi^+\pi^-$  [LHCb, Nature Physics 2017]

 $A_{CP}(\Lambda_{b}^{0} \to p\pi^{-}) = (-3.5 \pm 1.7 \pm 2.0)\%$ 

rge Production: 
$$\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5 \longrightarrow \frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$$

• Precision of baryon CPV measurements has reached to the order of 1% [LHCb, PLB2018]

$$\delta$$
,  $A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0) %$ 

- LHCb is a **baryon factory** !! La
- •CPV evidence:  $3\sigma$  in  $\Lambda_h^0 \to p\pi^-\pi^+\pi^-$  [LHCb, Nature Physics 2017]

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0) \%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0) \%$$

•CPV in some B-meson decays are as large as 10%:

 $A_{CP}(\overline{B}{}^0 \to \pi^+\pi^-) = -0.32 \pm 0.04, \ A_{CP}(\overline{B}{}^0 \to K^-\pi^+) = -0.084 \pm 0.004, \ A_{CP}(\overline{B}{}^0_s \to K^+\pi^-) = +0.213 \pm 0.017$ 

It can be expected that CPV in b-baryons might be observed soon !!

rge Production: 
$$\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5 \longrightarrow \frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$$

•Precision of baryon CPV measurements has reached to the order of 1% [LHCb, PLB2018]



- LHCb is a **baryon factory** !! La
- •CPV evidence:  $3\sigma$  in  $\Lambda_h^0 \to p\pi^-\pi^+\pi^-$  [LHCb, Nature Physics 2017]

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0)\%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0)\%$$

•CPV in some B-meson decays are as large as 10%:

$$A_{CP}(\overline{B}{}^0 \to \pi^+\pi^-) = -0.32 \pm 0.04, \ A_{CP}(\overline{B}{}^0 \to K^-\pi^-)$$

- It can be expected that CPV in b-baryons might be observed soon !!
- Theoretical precision is required to be improved.

rge Production: 
$$\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5 \longrightarrow \frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$$

•Precision of baryon CPV measurements has reached to the order of 1% [LHCb, PLB2018]

 $\pi^+$ ) =  $-0.084 \pm 0.004$ ,  $A_{CP}(\overline{B}_s^0 \to K^+\pi^-) = +0.213 \pm 0.017$ 



# **Theoretical opportunities**

- •Baryons are very different from mesons!!
- •Factorization: Heavy-to-light form factor is factorizable at leading power in SCET. No end-point singularity! [Wei Wang, 1112.0237] Taking  $\Lambda_h \to \Lambda$  as an example,

 $\xi_{\Lambda} = f_{\Lambda_b} \Phi_{\Lambda_b}(x_i) \otimes J(x_i, y_i) \otimes f_{\Lambda} \Phi_{\Lambda}(y_i)$ 

# **Theoretical opportunities**

- Baryons are very different from mesons!!
- •Factorization: Heavy-to-light form factor is factorizable at leading power in SCET. No end-point singularity! [Wei Wang, 1112.0237] Taking  $\Lambda_h \to \Lambda$  as an example,  $\xi_{\Lambda} = f_{\Lambda_b} \Phi_{\Lambda_b}(x_i) \otimes J(x_i, y_i) \otimes f_{\Lambda} \Phi_{\Lambda}(y_i)$
- •However, the leading-power result is one order of magnitude smaller than the total one
  - •Leading power:  $\xi_{\Lambda}(0) = -0.012$  [W.Wang, 2011]
  - Total form factor:  $\xi_{\Lambda}(0) = 0.18$  [Y.L.Shen, Y.M.Wang, 2016]
- •Two hard gluons suppressed by  $\alpha_s^2$  at the leading power. Compared to the soft contributions in the power corrections.
- More is different!!



- •Generalized factorization: Not QCD-inspired. No W-exchange diagrams.
- •QCDF: Diquark approximation. No hard spectator effects. No W-exchange diagrams
- **PQCD**: Not consistent with data.
- •Currently, no complete QCD-inspired method for non-leptonic b-baryon decays

|                                          | EXP            | GF        | PQCD                         | QCDF        |
|------------------------------------------|----------------|-----------|------------------------------|-------------|
| $Br(\Lambda_b \to p\pi)[\times 10^{-6}]$ | $4.3 \pm 0.8$  | 4.2+-0.7  | <b>4.66</b> +2.22-1.81       | 4.11~4.57   |
| $Br(\Lambda_b \to pK)[\times 10^{-6}]$   | $5.1 \pm 0.9$  | 4.8+-0.7  | <b>1.82</b> +0.97-1.07       | 1.70~3.15   |
| $A_{CP}(\Lambda_b \to p\pi)[\%]$         | $-2.5 \pm 2.9$ | -3.9+-0.2 | <b>-32</b> +49 <sub>-1</sub> | -3.74~-3.08 |
| $A_{CP}(\Lambda_b \to pK)[\%]$           | $-2.5 \pm 2.2$ | 5.8+-0.2  | <b>-3</b> +25 <sub>-4</sub>  | 8.1~11.4    |

# Recent Progresses: (1) PQCD and (2) LCSR

- It is hopeful to predict correct CPV of b-baryons. W-exchange diagrams included.

• PQCD successfully predicted correct CPV in B meson decays [Keum, Li, Sanda, 2000; Lu, Ukai, Yang, 2000].



- PQCD successfully predicted correct CPV in B meson decays [Keum, Li, Sanda, 2000; Lu, Ukai, Yang, 2000].
- It is hopeful to predict correct CPV of b-baryons. W-exchange diagrams included.
- •The only prediction of b-baryon CPV by PQCD is given in [C.D.Lu, Y.M.Wang, H.Zou, Ali, Kramer, 2009]
- •However, the form factors are two orders of magnitude smaller than Lattice or sum rules

Lattice [35] 
$$0.22 = 0.22 = 0.22$$
  
PQCD [67]  $2.2^{+0.8}_{-0.5}$ 

 $\pm 0.08$  $\times 10^{-3}$ H.n.Li, 1999; C.D.Lu, Y.M.Wang, H.Zou, Ali, Kramer, 2009







- PQCD successfully predicted correct CPV in B meson decays [Keum, Li, Sanda, 2000; Lu, Ukai, Yang, 2000].
- It is hopeful to predict correct CPV of b-baryons. W-exchange diagrams included.
- •The only prediction of b-baryon CPV by PQCD is given in [C.D.Lu, Y.M.Wang, H.Zou, Ali, Kramer, 2009]
- •However, the form factors are two orders of magnitude smaller than Lattice or sum rules

| Lattice $[35]$ | 0.22 =              |
|----------------|---------------------|
| PQCD $[67]$    | $2.2^{+0.8}_{-0.5}$ |

- •Only the leading twist of light-cone distribution amplitudes (LCDAs) were considered.
- •Recall that leading power is suppressed, so sub-leading power would be dominated.
- Consider higher twist LCDAs!!

$$\mathcal{A} = \Psi_{\Lambda_b}(x_i, b_i, \mu) \otimes H(x_i, b_i, x'_i, b'_i, \mu) \otimes \Psi_P(x'_i, b'_i, \mu)$$

 $\pm 0.08$  $\times 10^{-3}$ H.n.Li, 1999; C.D.Lu, Y.M.Wang, H.Zou, Ali, Kramer, 2009









| $f_1(0)$ $f_2(0)$ $g_1(0)$ $g_2(0)$ NRQM [76]     0.043                                                                            |                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NRQM [76] 0.043                                                                                                                    |                                                                                                                                                             |
|                                                                                                                                    |                                                                                                                                                             |
| heavy-LCSR [50] $0.023^{+0.006}_{-0.005}$ $0.023^{+0.006}_{-0.005}$                                                                |                                                                                                                                                             |
| light-LCSR- $\mathcal{A}$ [77] $0.14^{+0.03}_{-0.03}$ $-0.054^{+0.016}_{-0.013}$ $0.14^{+0.03}_{-0.03}$ $-0.028^{+0.012}_{-0.009}$ |                                                                                                                                                             |
| light-LCSR- $\mathcal{P}$ [77] $0.12^{+0.03}_{-0.04}$ $-0.047^{+0.015}_{-0.013}$ $0.12^{+0.03}_{-0.03}$ $-0.016^{+0.007}_{-0.005}$ |                                                                                                                                                             |
| QCD-light-LCSR [78] 0.018 -0.028 0.018 -0.028                                                                                      |                                                                                                                                                             |
| HQET-light-LCSR [78] $-0.002$ $-0.015$                                                                                             |                                                                                                                                                             |
| $3-\text{point QSR [49]} \qquad 0.22 \qquad 0.0071$                                                                                | u $b$ $d$                                                                                                               |
| lattice [47] $0.22 \pm 0.08$ $0.04 \pm 0.12$ $0.12 \pm 0.14$ $0.04 \pm 0.31$                                                       | u $b$                                                                                                                   |
| $PQCD [32] \qquad 2.2^{+0.8}_{-0.5} \times 10^{-3}$                                                                                | $a \xrightarrow{a} d \xrightarrow{d} d \xrightarrow{d} a$                                                                                                   |
| this work (exponential) $0.27 \pm 0.12$ $0.008 \pm 0.005$ $0.31 \pm 0.16$ $0.014 \pm 0.008$                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                        |
| this work (free parton) $0.24 \pm 0.10$ $0.007 \pm 0.004$ $0.27 \pm 0.13$ $0.014 \pm 0.010$                                        | $\begin{array}{c} & u & b \\ & & & u \\ & & & u \\ & & & u \\ & & & d \\ & & & & d \end{array} \begin{array}{c} & u \\ & & & & & \\ & & & & & \\ & & & & &$ |

Higher twist LCDAs contribute to the correct order of form factors.



### proton

|         |                      | twist-3 | twist-4  | twist-5  | twist-6   | total                    |
|---------|----------------------|---------|----------|----------|-----------|--------------------------|
|         | exponential          |         |          |          |           |                          |
|         | $\overline{twist-2}$ | 0.0007  | -0.00007 | -0.0005  | -0.000003 | 0.0001                   |
| Λ.      | $twist-3^{+-}$       | -0.0001 | 0.002    | 0.0004   | -0.000004 | 0.002                    |
| $^{T}b$ | $twist-3^{-+}$       | -0.0002 | 0.0060   | 0.000004 | 0.00007   | 0.006                    |
|         | twist-4              | 0.01    | 0.00009  | 0.25     | 0.0000007 | 0.26                     |
|         | total                | 0.01    | 0.008    | 0.25     | 0.00007   | $0.27 \pm 0.09 \pm 0.07$ |
|         |                      |         |          |          |           |                          |



### proton

|             |                                                                         | twist-3                              | twist-4                               | twist-5                               | twist-6                                       | total                                                           |
|-------------|-------------------------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|
| $\Lambda_b$ | exponential<br>twist-2<br>twist- $3^{+-}$<br>twist- $3^{-+}$<br>twist-4 | 0.0007<br>-0.0001<br>-0.0002<br>0.01 | -0.00007<br>0.002<br>0.0060<br>0.0009 | -0.0005<br>0.0004<br>0.000004<br>0.25 | -0.000003<br>-0.000004<br>0.00007<br>0.000007 | $\begin{array}{c} 0.0001 \\ 0.002 \\ 0.006 \\ 0.26 \end{array}$ |
|             | total                                                                   | 0.01                                 | 0.008                                 | 0.25                                  | 0.00007                                       | $0.20 \pm 0.09 \pm 0.07$                                        |

- •High-twist LCDA dominant: twist-5 of proton + twist-4 of  $\Lambda_h$
- •Consistent with the power analysis by SCET.



|  | proton |  |
|--|--------|--|
|--|--------|--|

|             |                                                                         | twist-3                              | twist-4                                | twist-5                               | twist-6                                       | total                                                           |
|-------------|-------------------------------------------------------------------------|--------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|
| $\Lambda_b$ | exponential<br>twist-2<br>twist- $3^{+-}$<br>twist- $3^{-+}$<br>twist-4 | 0.0007<br>-0.0001<br>-0.0002<br>0.01 | -0.00007<br>0.002<br>0.0060<br>0.00009 | -0.0005<br>0.0004<br>0.000004<br>0.25 | -0.000003<br>-0.000004<br>0.00007<br>0.000007 | $\begin{array}{c} 0.0001 \\ 0.002 \\ 0.006 \\ 0.26 \end{array}$ |
|             | total                                                                   | 0.01                                 | 0.008                                  | 0.25                                  | 0.00007                                       | $0.27 \pm 0.09 \pm 0.07$                                        |

- •High-twist LCDA dominant: twist-5 of proton + twist-4 of  $\Lambda_h$
- •Consistent with the power analysis by SCET.
- •Perturbation protected. Results are given with  $\mu \geq 1$  GeV.

```
•Safely twist expansion. Twist-6 of proton is highly suppressed.
```



|           |                | proton  |          |          |           |                          |
|-----------|----------------|---------|----------|----------|-----------|--------------------------|
|           |                | twist-3 | twist-4  | twist-5  | twist-6   | total                    |
|           | exponential    |         |          |          |           |                          |
|           | twist-2        | 0.0007  | -0.00007 | -0.0005  | -0.000003 | 0.0001                   |
| Λ.        | $twist-3^{+-}$ | -0.0001 | 0.002    | 0.0004   | -0.000004 | 0.002                    |
| <b>1b</b> | $twist-3^{-+}$ | -0.0002 | 0.0060   | 0.000004 | 0.00007   | 0.006                    |
|           | twist-4        | 0.01    | 0.00009  | 0.25     | 0.0000007 | 0.26                     |
|           | total          | 0.01    | 0.008    | 0.25     | 0.00007   | $0.27 \pm 0.09 \pm 0.07$ |

contributions of higher twist hadronic LCDAs."

J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2202.04804

•The reports of referee of EPJC: "The calculation is a highly technical and serious task. The study is comprehensive and original. This research results not only provide a good and practicable explanation for the long-standing unresolved discrepancies in baryonic transition form factors between PQCD and Lattice QCD calculations, but also deepen our understandings on the specific



# Non-leptonic baryon decays in PQCD

### It can be expected that PQCD can predict CPV of b-baryons





Lu, Wang, Zou, Ali, Kramer, 2009

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $b \xrightarrow{d} \underbrace{u}_{u} \xrightarrow{u}_{u} u$ | $b \xrightarrow{u}{u}$                               | d<br>b<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | $d _{(GT1)} d _{(GT2)} _{(GT3)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | $u \xrightarrow{\downarrow} (GC1) u \xrightarrow{\downarrow} (GC2) \xrightarrow{\downarrow} (GC3) u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | $d \xrightarrow{\overline{u}} \overline{u}$ $d \xrightarrow{\overline{u}} \overline{u}$ $(GE1)$ $d \xrightarrow{\overline{u}} \overline{u}$ $(GE2)$ $(GE3)$ $d \xrightarrow{\overline{u}} \overline{u}$ $(GE3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | u  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d  d |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | $d \xrightarrow{u}_{(GP1)} u \xrightarrow{u}_{(GP2)} (GP2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

### J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, in preparation



# **Non-leptonic baryon decays in PQCD**

### It can be expected that PQCD can predict CPV of b-baryons



Lu, Wang, Zou, Ali, Kramer, 2009

 $b \xrightarrow{d} \underbrace{u}_{u} \xrightarrow{u}_{u} \xrightarrow{u$  $b \xrightarrow{u}_{u} \xrightarrow{u}_{u}$ 

• $\Lambda_b \to \Lambda_c \pi, \Lambda_c K$  and  $\Lambda_b \to \Lambda J/\Psi$  are recently studied in PQCD [Zhou Rui, C.Q.Zhang, J.M.Li, M.K.Jia, 2202.09181, 2206.04501]

### J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, in preparation

|      | $\frac{d}{d}$ $\frac{\bar{u}}{d}$ $\frac{1}{2}$ $\frac$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | $\begin{array}{c} u \\ b \\ u \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | $b \xrightarrow{d} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $d$ $\bar{u}$ $u$ $\bar{u}$ $\bar{u}$ $\bar{u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $d \xrightarrow{3} (GT1) \qquad d \xrightarrow{3} (GT2) \qquad (GT3) \qquad d \xrightarrow{3} (GT3) (GT3) (GT3) \qquad d \xrightarrow{3} (GT3) ($ |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u  u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| **** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $d \xrightarrow{u}_{(GE1)} u \xrightarrow{u}_{(GE2)} u \xrightarrow{u}_{(GE3)} u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} u & & u \\ d & & \\ d & & \\ d & & \\ (GB1) & d & \\ b & & \\ b & & \\ d & & \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $d \xrightarrow{u}_{u} u$ $u \xrightarrow{u}_{(GP1)} u$ $(GP2)$ $(GP3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |





- Two-body hadronic decays of  $\Lambda_h \rightarrow p\pi$ , pK are studied firstly in LCSRs [H.Y.Jiang, Khodjamirian, FSY, S.Cheng, in preparation]
- •LCSR has been studied in  $B \rightarrow \pi \pi$  [Khodjamirian, 2001, 2003, 2005] and applied to predict CPV of D meson decays [Khodjamirian, 2017]



- •Two-body hadronic decays of  $\Lambda_b \rightarrow p\pi$ , pK are studied firstly in LCSRs [H.Y.Jiang, Khodjamirian, FSY, S.Cheng, in preparation]
- •LCSR has been studied in  $B \rightarrow \pi \pi$  [Khodjamirian, 2001, 2003, 2005] and applied to predict CPV of D meson decays [Khodjamirian, 2017]
- It overcomes the difficulty of calculation on W-exchange diagrams in QCDF.



Three-point correlator scheme





Two-point correlator scheme

- Two-body hadronic decays of b-baryons are studied firstly in LCSRs
- [H.Y.Jiang, Khodjamirian, FSY, S.Cheng, in preparation]
- The full framework has been well established.
- Two-point correlators can be easily calculated, to cross check the 3-point results, and to be extended to NLO corrections.
- The preliminary numerical results are consister with data.

| Topology      | 3pt scheme       | 2pt scheme       |
|---------------|------------------|------------------|
| $T(10^{-9})$  | (-1.57i, -1.51i) | (-1.79i, -1.80i) |
| $C'(10^{-9})$ | (0.20i, 0.20i)   | (0.26i, 0.25i)   |

|    | channel              | $\Lambda_b \to p\pi$ | $\Lambda_b \to pK$ |  |  |  |
|----|----------------------|----------------------|--------------------|--|--|--|
|    | topology             | $T, C', E_2, B$      | $T, E_2$           |  |  |  |
|    | topology             | $P_C, P_{C'}$        | $P_C$              |  |  |  |
|    | BR $(10^{-6})$       | 5.94                 | 6.50               |  |  |  |
|    | BR (PDG) $(10^{-6})$ | $4.5\pm0.8$          | $5.4 \pm 1.0$      |  |  |  |
| nt | $A_{CP}$             | -0.018               | -0.001             |  |  |  |
| 11 | $A_{CP}$ (PDG)       | $-0.025\pm0.029$     | $-0.025 \pm 0.022$ |  |  |  |
|    |                      |                      |                    |  |  |  |

# Prospects: LCDA and others

# **Prospects: LCDA**

### Nucleons, hyperons, octet and decuplet states, excited states

- Motivation: Limited knowledge for nucleons. VERY very limited for all the others, especially for HIGH TWISTs.
- Non-perturbative methods: LaMET and Lattice QCD, Dyson-Schwinger equation, Light-Front Quantization, QCD sum rules
- b-baryon
  - Motivation: Very model-dependent. Very large uncertainties of parameters. • Methods: QCD sum rules, phenomenologies.

  - Higher twists. Evolutions.

### **Prospects: others**

- Non-leptonic decays
  - PQCD: threshold Sudakov factor, factorization
  - Power counting under SCET
  - More processes for predictions on baryon CPV
- Form factors: tree and FCNC
  - More precise: many methods like LQCD, LCSR, SCET, DSE, LCQM.
  - More processes: higher excited states.
- CPV observables, polarizations and angular distributions
  - T-odd observables, Lee-Yang parameters  $\alpha, \beta, \gamma$
- Inclusive decays and Lifetimes
  - b-baryons, charmed baryons

See Wei Wang's, Yu-Shuai Li's talk



at the current stage.



# Summary and outlook

### Baryon physics is an opportunity of heavy flavor physics

Backups

### **Baryon physics**

- However, our knowledge on the basic nucleon are even limited.
- •The mass and spin puzzles of proton are among the most important problems in physics.
- Related to the inner structures and perturbative and nonperturbative QCD dynamics.









### LHCb is a baryon factory !! Large

| Machine     | CEPC                         | Belle II (50 $ab^{-1}$                  | LHCb                   |
|-------------|------------------------------|-----------------------------------------|------------------------|
|             | (10 <sup>12</sup> <i>Z</i> ) | + 5 ab <sup>−1</sup> at Ƴ(5 <i>S</i> )) | $(50 \text{ fb}^{-1})$ |
| Data taking | 2030-2040                    | ightarrow 2025                          | ightarrow 2030         |
| $B^+$       | $6 \times 10^{10}$           | $3 	imes 10^{10}$                       | $3 \times 10^{13}$     |
| $B^0$       | $6 \times 10^{10}$           | $3	imes 10^{10}$                        | $3 	imes 10^{13}$      |
| $B_s$       | $2 \times 10^{10}$           | $3 	imes 10^8$                          | $8 \times 10^{12}$     |
| $B_c$       | $6 \times 10^7$              | _                                       | $6 \times 10^{10}$     |
| b baryons   | 10 <sup>10</sup>             | _                                       | 10 <sup>13</sup>       |

Production: 
$$\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5 \longrightarrow \frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$$

### LHCb is a baryon factory !! La

| Machine     | CEPC<br>(10 <sup>12</sup> <i>Z</i> ) | Belle II (50 $ab^{-1}$<br>+ 5 $ab^{-1}$ at $\Upsilon(5S)$ ) | LHCb<br>(50 fb <sup>-1</sup> ) |
|-------------|--------------------------------------|-------------------------------------------------------------|--------------------------------|
| Data taking | 2030-2040                            | ightarrow 2025                                              | ightarrow 2030                 |
| $B^+$       | $6 \times 10^{10}$                   | $3	imes 10^{10}$                                            | $3 	imes 10^{13}$              |
| $B^0$       | $6 \times 10^{10}$                   | $3	imes 10^{10}$                                            | $3	imes 10^{13}$               |
| $B_s$       | $2 \times 10^{10}$                   | 3 × 10 <sup>8</sup>                                         | $8 	imes 10^{12}$              |
| $B_c$       | $6 \times 10^7$                      | _                                                           | $6 \times 10^{10}$             |
| b baryons   | 10 <sup>10</sup>                     | _                                                           | <b>10</b> <sup>13</sup>        |

|                          | 2011               | 2012               | 2018               | 2023                | 2029                | 2035                 |
|--------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|----------------------|
| LHCb                     | Run I              |                    | Run II             | Run III             | Run IV              | Run V                |
| Integrated<br>Iuminosity | 1 fb <sup>-1</sup> | 3 fb <sup>-1</sup> | 9 fb <sup>-1</sup> | 23 fb <sup>-1</sup> | 50 fb <sup>-1</sup> | 300 fb <sup>-1</sup> |

# Large Production: $\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5 \longrightarrow \frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$

### • LHCb is a **baryon factory** !! Large

| Machine     | CEPC<br>(10 <sup>12</sup> <i>Z</i> ) | Belle II (50 $ab^{-1}$<br>+ 5 $ab^{-1}$ at $\Upsilon(5S)$ ) | LHCb<br>(50 fb <sup>-1</sup> ) |
|-------------|--------------------------------------|-------------------------------------------------------------|--------------------------------|
| Data taking | 2030-2040                            | ightarrow 2025                                              | ightarrow 2030                 |
| $B^+$       | $6 	imes 10^{10}$                    | $3	imes 10^{10}$                                            | $3 	imes 10^{13}$              |
| $B^0$       | $6	imes 10^{10}$                     | $3	imes 10^{10}$                                            | $3	imes 10^{13}$               |
| $B_s$       | $2 	imes 10^{10}$                    | 3 × 10 <sup>8</sup>                                         | $8 	imes 10^{12}$              |
| $B_c$       | $6 	imes 10^7$                       | _                                                           | $6 \times 10^{10}$             |
| b baryons   | 10 <sup>10</sup>                     | _                                                           | 10 <sup>13</sup>               |

|                          | 2011               | 2012               | 2018               | 2023                | 2029                | 2035                 |
|--------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|----------------------|
| LHCb                     | Run I              |                    | Run II             | Run III             | Run IV              | Run V                |
| Integrated<br>Iuminosity | 1 fb <sup>-1</sup> | 3 fb <sup>-1</sup> | 9 fb <sup>-1</sup> | 23 fb <sup>-1</sup> | 50 fb <sup>-1</sup> | 300 fb <sup>-1</sup> |

• BESIII and Belle II have fruitful results on charmed baryons and hyperons

Production: 
$$\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5 \longrightarrow \frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$$

- Motivation is to predict CPV. QCD studies on non-leptonic baryon decays are limited
- Generalized factorization [Y.K.Hsiao, C.Q.Geng, 2015; Liu, C.Q.Geng, 2021]: Advantages: Easily extended to more decay channels, and multi-body decays.
   Disadvantages: Not QCD-inspired. No W-exchange diagrams.

- Motivation is to predict CPV. QCD studies on non-leptonic baryon decays are limited
- Generalized factorization [Y.K.Hsiao, C.Q.Geng, 2015; Liu, C.Q.Geng, 2021]: Advantages: Easily extended to more decay channels, and multi-body decays.
   Disadvantages: Not QCD-inspired. No W-exchange diagrams.



$$\mathcal{A}(\Lambda_b \to pM) = i \frac{G_F}{\sqrt{2}} m_b f_M \left[ \alpha_M \langle p | \bar{u}b | \Lambda_b \rangle + \beta_M \langle p | \bar{u}\gamma_5 b | \Lambda_b \rangle \right]$$

- •Generalized factorization [Y.K.Hsiao, C.Q.Geng, 2015; Liu, C.Q.Geng, 2021]: Advantages: Easily extended to more decay channels, and multi-body decays. Disadvantages: Not QCD-inspired. No W-exchange diagrams.



$$\mathcal{A}(\Lambda_b \to pM) = i \frac{G_F}{\sqrt{2}} m_b f_M \left[ \alpha_M \langle p | \bar{u}b | \Lambda_b \rangle + \beta_M \langle p | \bar{u}\gamma_5 b | \Lambda_b \rangle \right]$$

### Motivation is to predict CPV. QCD studies on non-leptonic baryon decays are limited

### LHCb: $\Lambda_b^0 \rightarrow p \pi^+ \pi^- \pi^-$ , $3\sigma$ CPV, Nature Physics 2017

Decays of the  $\Lambda_h^0$  (*bud*) baryon to final states consisting of hadrons with no charm quarks are predicted to have non-negligible CP asymmetries in the SM, as large as 20% for certain three-body decay modes<sup>13</sup>. It is important to measure the size and nature of these *CP* asymmetries in as many decay modes as possible, to determine

13. Hsiao, Y. K. & Geng, C. Q. Direct *CP* violation in  $\Lambda_h^0$  decays. *Phys. Rev. D* **91**, 116007 (2015).



- •Generalized factorization: Not QCD-inspired. No W-exchange diagrams.
- •QCDF [J.Zhu, H.W.Ke, Z.T.Wei, 2016, 2018]: Advantages: QCD inspired. Collinear factorization.



Disadvantages: Diquark approximation. No hard spectator effects and W-exchange diagrams



 $d\xi dx dy \ T^{II}(\xi,x,y) \Phi_B(\xi) \Phi_{M_1}(y) \Phi_{M_2}(x)$ +





Two hard gluons.

More than 200 Feynman diagrams



- •Generalized factorization: Not QCD-inspired. No W-exchange diagrams.
- •QCDF: Diquark approximation. No hard spectator effects. No W-exchange diagrams
- •PQCD [C.D.Lu, Y.M.Wang, H.Zou, A.Ali, Kramer, 2009]:
  - •Advantages: QCD inspired.  $k_T$  factorization. All contributions included in principle.



- Two hard gluons.
- More than 200 Feynman diagrams



- •Generalized factorization: Not QCD-inspired. No W-exchange diagrams.
- •QCDF: Diquark approximation. No hard spectator effects. No W-exchange diagrams
- •PQCD [C.D.Lu, Y.M.Wang, H.Zou, A.Ali, Kramer, 2009]:
  - •Advantages: QCD inspired.  $k_T$  factorization. All contributions included in principle.
  - Disadvantages: not consistent with data.



Two hard gluons.

More than 200 Feynman diagrams



|                                          | EXP            | PQCD                         |
|------------------------------------------|----------------|------------------------------|
| $Br(\Lambda_b \to p\pi)[\times 10^{-6}]$ | $4.3 \pm 0.8$  | 4.66+2.22-1                  |
| $Br(\Lambda_b \to pK)[\times 10^{-6}]$   | $5.1 \pm 0.9$  | 1.82 <sup>+0.97</sup> -1     |
| $A_{CP}(\Lambda_b \to p\pi)[\%]$         | $-2.5 \pm 2.9$ | <b>-32</b> +49 <sub>-1</sub> |
| $A_{CP}(\Lambda_b \to pK)[\%]$           | $-2.5 \pm 2.2$ | <b>-3</b> +25 <sub>-4</sub>  |



Topological diagrams of non-leptonic decays: more diagrams than mesons.



Topological diagrams of non-leptonic decays: more diagrams than mesons.



Annihilation-type diagrams contribute significantly to strong phases of CPV in B

meson decays. To precisely predict CPV, W-exchange diagrams have to be calculated



Topological diagrams of non-leptonic decays: more diagrams than mesons.



- Annihilation-type diagrams contribute significantly to strong phases of CPV in B
- •More non-factorizable diagrams: C', E1, E2, B. They are challenging in theory.

$$\frac{|C|}{|T|} \sim \frac{|C'|}{|C|} \sim \frac{|E_1|}{|C|} \sim \frac{|E_2|}{|C|} \sim O\left(\frac{\Lambda_{\text{QCD}}^h}{m_Q}\right) \qquad \Lambda_k$$

meson decays. To precisely predict CPV, W-exchange diagrams have to be calculated

 $h \to \Lambda_c \pi$ Leibovich, Ligeti, Stewart, Wise, 2004



| 直接CP破坏(%)                 | GFA           | QCDF           | PQCD         | exp.           |
|---------------------------|---------------|----------------|--------------|----------------|
| $B \to \pi^+ \pi^-$       | -5 <u>+</u> 3 | -6 <u>+</u> 12 | $+30 \pm 20$ | +32 ± 4        |
| $B \rightarrow K^+ \pi^-$ | +10 ± 3       | +5 ± 9         | -17 ± 5      | $-8.3 \pm 0.4$ |

- It is hopeful to predict correct CPV of b-baryons. W-exchange diagrams included.
- •The only prediction of b-baryon CPV by PQCD is given for  $\Lambda_b \to p\pi, pK$  in [C.D.Lu, Y.M.Wang, H.Zou, Ali, Kramer, 2009]

• PQCD successfully predicted correct CPV in B meson decays [Keum, Li, Sanda, 2000; Lu, Ukai, Yang, 2000].



- PQCD successfully predicted correct CPV in B meson decays [Keum, Li, Sanda, 2000; Lu, Ukai, Yang, 2000].
- It is hopeful to predict correct CPV of b-baryons. W-exchange diagrams included.
- •The only prediction of b-baryon CPV by PQCD is given for  $\Lambda_b \to p\pi, pK$  in [C.D.Lu, Y.M.Wang, H.Zou, Ali, Kramer, 2009]

| Lattice $[35]$ | 0.22              |
|----------------|-------------------|
| PQCD $[67]$    | $2.2^{+0.}_{-0.}$ |

factoriz

 $f_1(\Lambda_b \to p\pi) \quad 1.47 \times 10^{-11} - i$  $f_2(\Lambda_b \to p\pi) \quad 1.26 \times 10^{-11} - i$  $f_1(\Lambda_b \to pK) - 1.52 \times 10^{-11}$  $f_2(\Lambda_b \to pK) \quad 0.17 \times 10^{-11} - i$ 

### •However, the form factors are two orders of magnitude smaller than Lattice or sum rules

- $\pm 0.08$ Detmold, Lehner, Meinel, 2015
- $\frac{8}{5} \times 10^{-3}$ H.n.Li, 1999; C.D.Lu, Y.M.Wang, H.Zou, Ali, Kramer, 2009

| zable                   | non-factorizable                               |
|-------------------------|------------------------------------------------|
| $i1.97 	imes 10^{-11}$  | $-2.43 \times 10^{-9} - i2.05 \times 10^{-9}$  |
| $i1.94 \times 10^{-11}$ | $-1.75\times 10^{-9} - i1.20\times 10^{-9}$    |
| $i0.62\times 10^{-11}$  | $-0.88 \times 10^{-9} + i0.54 \times 10^{-10}$ |
| $i0.60 \times 10^{-11}$ | $-1.06\times 10^{-9} + i 1.67\times 10^{-9}$   |





### **Form Factors**



- [32] C. D. Lu, Y. M. Wang, H. Zou, A. Ali and G. Kramer, "Anatomy of the pQO approach to the baryonic decays  $\Lambda_b \to p\pi, pK$ ," Phys. Rev. D 80, 034011 (20) [arXiv:0906.1479 [hep-ph]].
- [47] W. Detmold, C. Lehner and S. Meinel, " $\Lambda_b \to p\ell^- \bar{\nu}_\ell$  and  $\Lambda_b \to \Lambda_c \ell^- \bar{\nu}_\ell$  form factorial form factorial of the second from lattice QCD with relativistic heavy quarks," Phys. Rev. D 92,034503 (20 [arXiv:1503.01421 [hep-lat]].
- [49] C. S. Huang, C. F. Qiao and H. G. Yan, "Decay  $\Lambda_b \to p$  lepton anti-neutrino QCD sum rules," Phys. Lett. B 437, 403 (1998) [arXiv:hep-ph/9805452 [hep-ph

| CD<br>09)    | [50] | Y. M. Wang, Y. L. Shen and C. D. Lu, " $\Lambda_b \rightarrow p, \Lambda$ transition form factors from QCD light-cone sum rules," Phys. Rev. D 80, 074012 (2009) [arXiv:0907.4008 [hep-ph]].      |
|--------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ors          | [76] | R. Mohanta, A. K. Giri and M. P. Khanna, "Charmless two-body hadronic decays of $\Lambda_b$ baryon," Phys. Rev. D 63, 074001 (2001) [arXiv:hep-ph/0006109 [hep-ph]].                              |
| 15)          | [77] | A. Khodjamirian, C. Klein, T. Mannel and Y. M. Wang, "Form factors and strong couplings of heavy baryons from QCD light-cone sum rules," JHEP <b>09</b> , 106 (2011) [arXiv:1108.2971 [hep-ph]].  |
| o in<br>h]]. | [78] | M. q. Huang and D. W. Wang, "Light cone QCD sum rules for the semileptonic decay $\Lambda_b \rightarrow p l \bar{\nu}$ ," Phys. Rev. D <b>69</b> , 094003 (2004) [arXiv:hep-ph/0401094 [hep-ph]]. |

29







### proton

|           |                 | twist-3 | twist-4  | twist-5  | twist-6   | total                    |
|-----------|-----------------|---------|----------|----------|-----------|--------------------------|
|           | exponential     |         |          |          |           |                          |
|           | $	ext{twist-2}$ | 0.0007  | -0.00007 | -0.0005  | -0.000003 | 0.0001                   |
| $\Lambda$ | $twist-3^{+-}$  | -0.0001 | 0.002    | 0.0004   | -0.000004 | 0.002                    |
| <b>1b</b> | $twist-3^{-+}$  | -0.0002 | 0.0060   | 0.000004 | 0.00007   | 0.006                    |
|           | twist-4         | 0.01    | 0.00009  | 0.25     | 0.000007  | 0.26                     |
|           | total           | 0.01    | 0.008    | 0.25     | 0.00007   | $0.27 \pm 0.09 \pm 0.07$ |



### proton

|             |                        | twist-3 | twist-4  | twist-5  | twist-6   | total                    |
|-------------|------------------------|---------|----------|----------|-----------|--------------------------|
|             | exponential            |         |          |          |           |                          |
| $\Lambda_b$ | twist-2                | 0.0007  | -0.00007 | -0.0005  | -0.000003 | 0.0001                   |
|             | $	ext{twist-}3^{+-}$   | -0.0001 | 0.002    | 0.0004   | -0.000004 | 0.002                    |
|             | $twist-3^{-+}$         | -0.0002 | 0.0060   | 0.000004 | 0.00007   | 0.006                    |
|             | twist-4                | 0.01    | 0.00009  | 0.25     | 0.000007  | 0.26                     |
|             | $\operatorname{total}$ | 0.01    | 0.008    | 0.25     | 0.00007   | $0.27 \pm 0.09 \pm 0.07$ |

J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2202.04804

•High-twist LCDA dominant: twist-5 of proton + twist-4 of  $\Lambda_h$ 



### proton

|             |                                                        | twist-3                                     | twist-4            | twist-5                                     | twist-6              | total                            |
|-------------|--------------------------------------------------------|---------------------------------------------|--------------------|---------------------------------------------|----------------------|----------------------------------|
|             | exponential<br>twist-2                                 | 0.0007                                      | -0.00007           | -0.0005                                     | -0.000003            | 0.0001                           |
| $\Lambda_b$ | $	ext{twist-3^{+-}} \\ 	ext{twist-3^{-+}} \end{cases}$ | -0.0001<br>-0.0002                          | 0.002<br>0.0060    | 0.0004<br>0.000004                          | -0.000004<br>0.00007 | 0.002<br>0.006                   |
|             | twist-4<br>total                                       | $\begin{array}{c} 0.01 \\ 0.01 \end{array}$ | $0.00009 \\ 0.008$ | $\begin{array}{c} 0.25 \\ 0.25 \end{array}$ | 0.0000007<br>0.00007 | $0.26 \\ 0.27 \pm 0.09 \pm 0.07$ |

•Consistent with the power analysis by SCET.

J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2202.04804

•High-twist LCDA dominant: twist-5 of proton + twist-4 of  $\Lambda_h$ 



### proton

|           |                      | twist-3 | twist-4  | twist-5  | twist-6   | total                    |
|-----------|----------------------|---------|----------|----------|-----------|--------------------------|
|           | exponential          |         |          |          |           |                          |
| Λ.        | $	ext{twist-2}$      | 0.0007  | -0.00007 | -0.0005  | -0.000003 | 0.0001                   |
|           | $twist-3^{+-}$       | -0.0001 | 0.002    | 0.0004   | -0.000004 | 0.002                    |
| <b>1b</b> | $	ext{twist-}3^{-+}$ | -0.0002 | 0.0060   | 0.000004 | 0.00007   | 0.006                    |
|           | twist-4              | 0.01    | 0.00009  | 0.25     | 0.0000007 | 0.26                     |
|           | total                | 0.01    | 0.008    | 0.25     | 0.00007   | $0.27 \pm 0.09 \pm 0.07$ |

•Consistent with the power analysis by SCET.



J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2202.04804

•High-twist LCDA dominant: twist-5 of proton + twist-4 of  $\Lambda_h$ 

$$\begin{bmatrix} db \end{bmatrix} \cdot \phi_{\Lambda_b} \cdot T_H \cdot \phi_p \\ r = \frac{m_p}{M_{\Lambda_b}} \\ \hline twist-5 & twist-6 \\ r^2 \cdot 2\sqrt{2}x_3 & r^3 \cdot 4\sqrt{2}(1-x_1)(1-x'_2) \\ r^2 \cdot (1-x_1)(1-x'_2) & \sim 0 \\ r^2 \cdot (1-x_1)(1-x'_2) & r^3 \cdot (1-x'_2) \\ r^2 \cdot 2\sqrt{2}(1-x'_2) & \sim 0 \\ \hline r^2 \cdot 2\sqrt{2}(1-x'_2) & \sim 0 \\ \hline \end{bmatrix}$$

 $\Lambda_b \text{ LCDAs}$  $x_1 \to 1, x_{2,3} \to 0$ 





# **Prospects: LCDAs**

- Light-cone distribution amplitudes (LCDA) are fundamental structures of hadrons.
- LCDAs are important in the factorization—PQCD, LCSR, SCET, QCDF...
- LCDAs are non-perturbative quantities, thus difficult for predictions.
- LCDAs of b-baryons and light baryons are much less known
- They are however important inputs in the calculations.
- So they dominate the theoretical uncertainties.
- The errors in each method are large.
- The differences between different methods are large.
- Theoretical efforts are urgently required.

•Heavy-to-light form factors have been systematically studied in the light-cone sum rules (LCSR)

√Next-to-leading order corrections [Y.M.Wang, Y.L.Shen, 2016] ✓ LCDAs of heavy baryons [Bell, Feldman, Y.M.Wang, Yip, 2013]  $\checkmark \Lambda_h \rightarrow p, N^*$  transitions [K.S.Huang, W.Liu, Y.L.Shen, FSY, 2205.06095]

$$\Pi_{\mu,a}(p,q) = \frac{1}{m_{p}^{2} - p^{2}} \sum_{s'} \left\langle 0 \left| \eta_{i}(0) \right| p\left(p,s'\right) \right\rangle \left\langle p\left(p,s'\right) \left| j_{\mu,a}(0) \right| \Lambda_{b}(p+q) \right\rangle$$

$$+ \frac{1}{m_{N^{*}}^{2} - p^{2}} \sum_{s'} \left\langle 0 \left| \eta_{i}(0) \right| N^{*}\left(p,s'\right) \right\rangle \left\langle N^{*}\left(p,s'\right) \left| j_{\mu,a}(0) \right| \Lambda_{b}(p+q) \right\rangle + \dots$$

Test three interpolating currents

 $\eta_{\mathrm{T}}$ 

• Test five models of  $\Lambda_b$  LCDAs

 $\eta_{\mathrm{L}}$ 

$$\eta_{\rm IO}(x) = \varepsilon^{abc} \left[ u^{aT}(x) C \gamma^{\rho} u^{b}(x) \right] \gamma_{5} \gamma_{\rho} d^{c}(x)$$
  
$$\eta_{\rm TE}(x) = \varepsilon^{abc} \left[ u^{aT}(x) C \sigma^{\rho\sigma} u^{b}(x) \right] \gamma_{5} \sigma_{\rho\sigma} d^{c}(x)$$
  
$$\eta_{\rm LP}(x) = \varepsilon^{abc} \left[ u^{aT}(x) C \not n u^{b}(x) \right] \gamma_{5} \not n d^{c}(x)$$



33

|                     |                               | $f_1$                            | $f_2$                             | <i>Q</i> 1                       | <i>Q</i> 2                        |
|---------------------|-------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|
|                     | Ioffe current                 | <i>J</i> 1                       | J 2                               |                                  |                                   |
|                     | Gegenbauer-1                  | $0.53 \pm 0.39$                  | $-0.12\pm0.099$                   | $0.53 \pm 0.39$                  | $-0.12\pm0.099$                   |
|                     | Gegenbauer-2                  | $0.50\pm0.077$                   | $-0.11\pm0.021$                   | $0.50\pm0.077$                   | $-0.11\pm0.021$                   |
| •                   | QCDSR                         | $0.13 \pm 0.023$                 | $-0.023 \pm 0.004$                | $0.13 \pm 0.023$                 | $-0.023\pm0.004$                  |
| $\Lambda_h \to \mu$ | <b>7</b> Exponential          | $0.14\pm0.087$                   | $-0.026 \pm 0.017$                | $0.14\pm0.087$                   | $-0.026 \pm 0.017$                |
| 0 -                 | Free-parton                   | $0.17\pm0.11$                    | $-0.031 \pm 0.022$                | $0.17\pm0.11$                    | $-0.031 \pm 0.022$                |
|                     | Tensor current                |                                  |                                   |                                  |                                   |
|                     | Gegenbauer-1                  | $0.37\pm0.34$                    | $-0.070 \pm 0.058$                | $0.37\pm0.34$                    | $-0.070 \pm 0.058$                |
|                     | Gegenbauer-2                  | $0.36\pm0.079$                   | $-0.068 \pm 0.015$                | $0.36\pm0.079$                   | $-0.068 \pm 0.015$                |
|                     | QCDSR                         | $0.11\pm0.023$                   | $-0.023 \pm 0.005$                | $0.11\pm0.023$                   | $-0.023 \pm 0.005$                |
|                     | Exponential                   | $0.12\pm0.071$                   | $-0.024\pm0.014$                  | $0.12\pm0.071$                   | $-0.024\pm0.014$                  |
|                     | Free-parton                   | $0.16\pm0.10$                    | $-0.033 \pm 0.021$                | $0.16\pm0.10$                    | $-0.033 \pm 0.021$                |
|                     | LP current                    |                                  |                                   |                                  |                                   |
|                     | Gegenbauer-1                  | $0.29\pm0.062$                   | $-0.050 \pm 0.011$                | $0.29\pm0.062$                   | $-0.050 \pm 0.011$                |
|                     | Gegenbauer-2                  | $0.31\pm0.071$                   | $-0.050 \pm 0.013$                | $0.31\pm0.071$                   | $-0.050 \pm 0.013$                |
|                     | QCDSR                         | $0.29\pm0.061$                   | $-0.050\pm0.010$                  | $0.29\pm0.061$                   | $-0.050\pm0.010$                  |
|                     | Exponential                   | $0.27\pm0.11$                    | $-0.045 \pm 0.017$                | $0.27\pm0.11$                    | $-0.045 \pm 0.017$                |
|                     | Free-parton                   | $0.38\pm0.15$                    | $-0.063 \pm 0.024$                | $0.38\pm0.15$                    | $-0.063 \pm 0.024$                |
|                     | heavy-LCSR[13]                | $0.023\substack{+0.006\\-0.005}$ | $-0.039\substack{+0.009\\-0.009}$ | $0.023\substack{+0.006\\-0.005}$ | $-0.039\substack{+0.009\\-0.009}$ |
|                     | light-LCSR- $\mathcal{A}[14]$ | $0.14\substack{+0.03\\-0.03}$    | $-0.054\substack{+0.016\\-0.013}$ | $0.14\substack{+0.03\\-0.03}$    | $-0.028\substack{+0.012\\-0.009}$ |
|                     | light-LCSR- $\mathcal{P}[14]$ | $0.12\substack{+0.03 \\ -0.04}$  | $-0.047\substack{+0.015\\-0.013}$ | $0.12\substack{+0.03\\-0.03}$    | $-0.016\substack{+0.007\\-0.005}$ |
|                     | QCD-light-LCSR[16]            | 0.018                            | -0.028                            | 0.018                            | -0.028                            |
|                     | HQET-light- $LCSR[16]$        | -0.002                           | -0.015                            | -0.002                           | -0.015                            |
|                     | PQCD-Exponential[32]          | $0.27\pm0.12$                    | $0.008 \pm 0.005$                 | $0.31\pm0.13$                    | $0.014\pm0.010$                   |
|                     | PQCD-Free-parton $[32]$       | $0.24\pm0.10$                    | $0.007 \pm 0.004$                 | $0.27\pm0.16$                    | $0.014\pm0.008$                   |
|                     | $\mathrm{CCQM}[26]$           | 0.080                            | -0.036                            | 0.007                            | -0.001                            |
|                     | $\mathrm{RQM}[27]$            | 0.169                            | -0.050                            | 0.196                            | -0.0002                           |
|                     | m LFQM[28]                    | 0.1131                           | -0.0356                           | 0.1112                           | -0.0097                           |
|                     | LQCD[29]                      | $0.22\pm0.08$                    | $0.04\pm0.12$                     | $0.12\pm0.14$                    | $0.04\pm0.31$                     |

- Ioffe and tensor currents are preferred for proton
- $\Lambda_b$  LCDA models of QCDSR, exponential, and free-parton are preferred.
- $\Lambda_b \to N^*$  are helpful to distinguish them.

[K.S.Huang, W.Liu, Y.L.Shen, FSY, 2205.06095]

| -                   |                        | $F_1$              | $F_2$                | $G_1$              | $G_2$              |
|---------------------|------------------------|--------------------|----------------------|--------------------|--------------------|
| -                   | Ioffe Current          |                    |                      |                    |                    |
|                     | Gegenbauer-1           | $0.23\pm0.57$      | $0.002\pm0.12$       | $0.23\pm0.57$      | $0.002\pm0.12$     |
|                     | Gegenbauer-2           | $0.20\pm0.15$      | $0.009 \pm 0.029$    | $0.20\pm0.15$      | $0.009 \pm 0.029$  |
| $\Lambda_b \to N^*$ | QCDSR                  | $0.015\pm0.021$    | $0.019 \pm 0.005$    | $0.015\pm0.021$    | $0.019 \pm 0.005$  |
|                     | Exponential            | $0.029 \pm 0.031$  | $0.017 \pm 0.008$    | $0.029 \pm 0.031$  | $0.017 \pm 0.008$  |
|                     | Free-parton            | $0.006\pm0.026$    | $0.028 \pm 0.015$    | $0.006\pm0.026$    | $0.028 \pm 0.015$  |
| -                   | Tensor Current         |                    |                      |                    |                    |
|                     | Gegenbauer-1           | $0.32\pm0.29$      | $-0.11\pm0.087$      | $0.32\pm0.29$      | $-0.11\pm0.087$    |
|                     | Gegenbauer-2           | $0.32\pm0.069$     | $-0.10\pm0.023$      | $0.32\pm0.069$     | $-0.10\pm0.023$    |
|                     | QCDSR                  | $0.10\pm0.019$     | $-0.035 \pm 0.007$   | $0.10\pm0.019$     | $-0.035 \pm 0.007$ |
|                     | $\mathbf{Exponential}$ | $0.10\pm0.062$     | $-0.036 \pm 0.021$   | $0.10\pm0.062$     | $-0.036 \pm 0.021$ |
|                     | Free-parton            | $0.14\pm0.089$     | $-0.050 \pm 0.032$   | $0.14\pm0.089$     | $-0.050 \pm 0.032$ |
| -                   | LP Current             |                    |                      |                    |                    |
|                     | Gegenbauer-1           | $1.16\pm0.22$      | $-0.34\pm0.065$      | $1.16\pm0.22$      | $-0.34\pm0.065$    |
|                     | Gegenbauer-2           | $1.22\pm0.24$      | $-0.34\pm0.075$      | $1.22\pm0.24$      | $-0.34\pm0.075$    |
|                     | QCDSR                  | $1.16\pm0.22$      | $-0.34\pm0.064$      | $1.16\pm0.22$      | $-0.34\pm0.064$    |
|                     | Exponential            | $1.07\pm0.42$      | $-0.30\pm0.11$       | $1.07\pm0.42$      | $-0.30\pm0.11$     |
|                     | Free-parton            | $1.48\pm0.60$      | $-0.43\pm0.16$       | $1.48\pm0.60$      | $-0.43\pm0.16$     |
| -                   | LCSR(1)[30]            | $-0.562 \pm 0.015$ | $0.451 \pm 0.0133$   | $0.523 \pm 0.014$  | $-0.454 \pm 0.013$ |
|                     | LCSR(2)[30]            | $-0.185\pm0.005$   | $0.184 \pm 0.006$    | $0.143 \pm 0.004$  | $-0.093\pm0.003$   |
|                     | LCSR-1[31]             | $-0.297 \pm 0.080$ | $-0.213 \pm 0.064$   | $-0.028 \pm 0.084$ | $0.106 \pm 0.031$  |
|                     | LCSR-2[31]             | $-0.202 \pm 0.060$ | $-0.0640 \pm 0.0018$ | $-0.144\pm0.043$   | $0.062\pm0.002$    |
|                     |                        |                    |                      |                    |                    |



### Light-Cone Distribution Amplitudes: $\Lambda_b$

$$(Y_{\Lambda_b})_{\alpha\beta\gamma}(x_i,\mu) = \frac{1}{8\sqrt{2}N_c} \Big\{ f_{\Lambda_b}^{(1)}(\mu) [M_1(x_2, M_2)] \Big\} \Big\} = \frac{1}{8\sqrt{2}N_c} \Big\{ f_{\Lambda_b}^{(1)}(\mu) [M_1(x_2, M_2)] \Big\} \Big\} = \frac{1}{8\sqrt{2}N_c} \Big\{ f_{\Lambda_b}^{(1)}(\mu) [M_1(x_2, M_2)] \Big\} = \frac{1}{8\sqrt{2}N_c} \Big\} = \frac{1}{8\sqrt{2}N_c} \Big\{ f_{\Lambda_b}^{(1)}(\mu) [M_1(x_2, M_2)] \Big\} = \frac{1}{8\sqrt{2}N_c} \Big\} = \frac{1}{$$

$$M_{1}(x_{2}, x_{3}) = \frac{\cancel{n}}{4} \cancel{\psi}_{3}^{+-}(x_{2}, x_{3}) + \frac{\cancel{n}}{4} \cancel{\psi}_{3}^{-+}(x_{2}, x_{3}),$$
  
$$M_{2}(x_{2}, x_{3}) = \frac{\cancel{n}}{\sqrt{2}} \cancel{\psi}_{2}(x_{2}, x_{3}) + \frac{\cancel{n}}{\sqrt{2}} \cancel{\psi}_{4}(x_{2}, x_{3}),$$

$$egin{aligned} & (Y_{\Lambda_b})_{lphaeta\gamma}(x_i,\mu) = rac{f'_{\Lambda_b}}{8\sqrt{2}N_c} [(
ot\!\!/ + m_{\Lambda_b})\gamma_5 C]_{eta\gamma}[\Lambda_b(p)]_lpha\psi(x_i,\mu), \ & \psi(x_i) = N x_1 x_2 x_3 \; exp\left(-rac{m_{\Lambda_b}^2}{2eta^2 x_1} - rac{m_l^2}{2eta^2 x_2} - rac{m_l^2}{2eta^2 x_3}
ight), \end{aligned}$$

 $(x_{3})\gamma_{5}C^{T}]_{\gamma\beta}+f^{(2)}_{\Lambda_{b}}(\mu)[M_{2}(x_{2},x_{3})\gamma_{5}C^{T}]_{\gamma\beta}\Big\{ [\Lambda_{b}(p)]_{\alpha} \Big\}$ 

### Light-Cone Distribution Amplitudes: $\Lambda_b$

$$\begin{split} \psi_{2}(x_{2}, x_{3}) =& m_{\Lambda_{b}}^{4} x_{2} x_{3} \left[ \frac{1}{\epsilon_{0}^{4}} e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\epsilon_{0}} + a_{2} C_{2}^{3/2} (\frac{x_{2}-x_{3}}{x_{2}+x_{3}}) \frac{1}{\epsilon_{1}^{4}} e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\epsilon_{1}} \right] \\ \psi_{3}^{+-}(x_{2}, x_{3}) =& \frac{2m_{\Lambda_{b}}^{3} x_{2}}{\epsilon_{3}^{3}} e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\epsilon_{3}}, \\ \psi_{3}^{-+}(x_{2}, x_{3}) =& \frac{2m_{\Lambda_{b}}^{3} x_{3}}{\epsilon_{3}^{3}} e^{-m_{\Lambda_{b}}(x_{2}+x_{3})/\epsilon_{3}}, \\ \psi_{4}(x_{2}, x_{3}) =& \frac{5}{\mathcal{N}} m_{\Lambda_{b}}^{2} \int_{m_{\Lambda_{b}}(x_{2}+x_{3})/2}^{s_{0}} ds e^{-s/\tau} (s - m_{\Lambda_{b}}(x_{2}+x_{3})/2)^{3}, \end{split}$$

Ball, Braun, Gardi, 0804.2424, PLB 2008

$$\begin{split} \psi_{2}(x_{2}, x_{3}) &= m_{\Lambda_{b}}^{4} x_{2} x_{3} \frac{a_{2}^{(2)}}{\epsilon_{2}^{(2)4}} C_{2}^{3/2} (\frac{x_{2} - x_{3}}{x_{2} + x_{3}}) e^{-m_{\Lambda_{b}}/(x_{2} + x_{3})/\epsilon_{2}^{(2)}}, \\ \psi_{3}^{+-}(x_{2}, x_{3}) &= m_{\Lambda_{b}}^{3} (x_{2} + x_{3}) \left[ \frac{a_{2}^{(3)}}{\epsilon_{2}^{(3)3}} C_{2}^{1/2} (\frac{x_{2} - x_{3}}{x_{2} + x_{3}}) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\epsilon_{2}^{(3)}} + \frac{b_{3}^{(3)}}{\eta_{3}^{(3)3}} C_{2}^{1/2} (\frac{x_{2} - x_{3}}{x_{2} + x_{3}}) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\eta_{3}^{(3)}} \right] \\ \psi_{3}^{-+}(x_{2}, x_{3}) &= m_{\Lambda_{b}}^{3} (x_{2} + x_{3}) \left[ \frac{a_{2}^{(3)}}{\epsilon_{2}^{(3)3}} C_{2}^{1/2} (\frac{x_{2} - x_{3}}{x_{2} + x_{3}}) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\epsilon_{2}^{(3)}} - \frac{b_{3}^{(3)}}{\eta_{3}^{(3)3}} C_{2}^{1/2} (\frac{x_{2} - x_{3}}{x_{2} + x_{3}}) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\eta_{3}^{(3)}} \right] \\ \psi_{4}(x_{2}, x_{3}) &= m_{\Lambda_{b}}^{2} \frac{a_{2}^{(4)}}{\epsilon_{2}^{(4)2}} C_{2}^{1/2} (\frac{x_{2} - x_{3}}{x_{2} + x_{3}}) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\epsilon_{2}^{(4)}}, \qquad a_{2}^{(2)} = 0.391 \pm 0.279, \ a_{2}^{(3)} = -0.161 + 0.108 + 0.007, \ a_{2}^{(4)} = -0.541 + 0.007 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0.009 + 0$$

Ali, Hambrock, Parkhomenko, W.Wang, 2012

### Model-I: Gegenbauer-1

Model-II: Gegenbauer-2

with the Gegenbauer moment 
$$a_2 = 0.333^{0.250}_{-0.333}$$
, the Gegenbauer polynomia  $3(5x^2-1)/2$ , the parameters  $\epsilon_0 = 200^{+130}_{-60}$  MeV,  $\epsilon_1 = 650^{+650}_{-300}$  MeV and  $\epsilon$ 

$$\frac{-5}{x_3}e^{-m_{\Lambda_b}(x_2+x_3)/\epsilon_2}, \qquad a_2^{(2)} = 0.391 \pm 0.279, \ a_2^{(3)} = -0.161^{+0.108}_{-0.207}, \ a_2^{(4)} = -0.541^{+0.173}_{-0.09}, \ b_3^{(3)} = -6.551^{+\infty}_{-0.02}, \ a_2^{(2)} = 0.551^{+\infty}_{-0.356}, \ \text{GeV}, \ \epsilon_2^{(3)} = 0.055^{+0.01}_{-0.02}, \ \alpha_2^{(4)} = 0.262^{+0.116}_{-0.132}, \ \alpha_2^{(4)} = 0.262^{+0.116$$







### Light-Cone Distribution Amplitudes: $\Lambda_b$

$$egin{aligned} \psi_2(x_2,x_3) =& rac{x_2 x_3}{\omega_0^4} m_{\Lambda_b}^4 e^{-(x_2+x_3)m_{\Lambda_b}/\omega_0}, \ \psi_3^{+-}(x_2,x_3) =& rac{2 x_2}{\omega_0^3} m_{\Lambda_b}^3 e^{-(x_2+x_3)m_{\Lambda_b}/\omega_0}, \ \psi_3^{-+}(x_2,x_3) =& rac{2 x_3}{\omega_0^3} m_{\Lambda_b}^3 e^{-(x_2+x_3)m_{\Lambda_b}/\omega_0}, \ \psi_4(x_2,x_3) =& rac{1}{\omega_0^2} m_{\Lambda_b}^2 e^{-(x_2+x_3)m_{\Lambda_b}/\omega_0}, \end{aligned}$$

### Model-III: Exponential

$$\begin{split} \psi_{2}(x_{2}, x_{3}) &= \frac{15x_{2}x_{3}m_{\Lambda_{b}}^{4}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})}{4\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}) \\ \psi_{3}^{+-}(x_{2}, x_{3}) &= \frac{15x_{2}m_{\Lambda_{b}}^{3}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{2}}{4\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}), \\ \psi_{3}^{-+}(x_{2}, x_{3}) &= \frac{15x_{3}m_{\Lambda_{b}}^{3}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{2}}{4\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}), \\ \psi_{4}(x_{2}, x_{3}) &= \frac{5m_{\Lambda_{b}}^{2}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{3}}{8\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}), \end{split}$$

Model-IV: Free Parton

 $\omega_0 = 0.4 \text{ GeV}$ 

Bell, Feldmann, Y.M.Wang, Yip, 1308.6114, JHEP2013



### Light-Cone Distribution Amplitudes: proton

$$\begin{split} &\langle \mathbf{0} \mid \varepsilon^{ijk} u_{\alpha}^{i'}(a_{1}z) \left[ a_{1}z, a_{0}z \right]_{i',i} u_{\beta}^{j'}(a_{2}z) \left[ a_{2}z, a_{0}z \right]^{i',i} u_{\alpha}^{j'}(a_{2}z) \left[ a_{2}z, a_{0}z \right]^{i',i} u_{\alpha}^{j'}(a_{1}z) u_{\beta}^{j}(a_{2}z) d_{\gamma}^{k}(a_{3}z) \left| P \right\rangle = \\ &= S_{1}MC_{\alpha\beta} \left( \gamma_{5}N^{+} \right)_{\gamma} + S_{2}MC_{\alpha\beta} \left( \gamma_{5}N^{-} \right)_{\gamma} + P_{1}M \left( \gamma_{5}C \right)_{\alpha\beta} N_{\gamma}^{+} + R_{\gamma} \left( \psi C \right)_{\alpha\beta} \left( \gamma_{5}N^{+} \right)_{\gamma} + V_{2} \left( \psi C \right)_{\alpha\beta} \left( \gamma_{5}N^{-} \right)_{\gamma} + \frac{V_{3}}{2}M \left( \gamma_{\perp}C \right)_{\alpha\beta} \left( \gamma^{\perp} + \frac{W^{4}}{2}M \left( \gamma_{\perp}C \right)_{\alpha\beta} \left( \gamma^{\perp}\gamma_{5}N^{-} \right)_{\gamma} + V_{5}\frac{M^{2}}{2pz} \left( \xi C \right)_{\alpha\beta} \left( \gamma_{5}N^{+} \right)_{\gamma} + \frac{M^{2}}{2pz} V_{6} \\ &+ A_{1} \left( \psi \gamma_{5}C \right)_{\alpha\beta} N_{\gamma}^{+} + A_{2} \left( \psi \gamma_{5}C \right)_{\alpha\beta} N_{\gamma}^{-} + \frac{A_{3}}{2}M \left( \gamma_{\perp}\gamma_{5}C \right)_{\alpha\beta} \left( \gamma^{\perp}N \right)_{\gamma} \\ &+ \frac{A_{4}}{2}M \left( \gamma_{\perp}\gamma_{5}C \right)_{\alpha\beta} \left( \gamma^{\perp}N^{-} \right)_{\gamma} + A_{5}\frac{M^{2}}{2pz} \left( \xi \gamma_{5}C \right)_{\alpha\beta} N_{\gamma}^{+} + \frac{M^{2}}{2pz} A_{6} \left( \xi A_{1}\right)_{\gamma} \\ &+ T_{1} \left( i\sigma_{\perp p}C \right)_{\alpha\beta} \left( \gamma^{\perp}\gamma_{5}N^{+} \right)_{\gamma} + T_{2} \left( i\sigma_{\perp p}C \right)_{\alpha\beta} \left( \gamma^{\perp}\gamma_{5}N^{-} \right)_{\gamma} \\ &+ T_{4}\frac{M}{pz} \left( i\sigma_{z p}C \right)_{\alpha\beta} \left( \gamma^{\perp}N^{-} \right)_{\gamma} + T_{5}\frac{M^{2}}{2pz} \left( i\sigma_{\perp z}C \right)_{\alpha\beta} \left( \gamma^{\perp}\gamma_{5}N^{+} \right)_{\gamma} + \frac{K^{2}}{2} \\ &+ M\frac{T_{7}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} + M\frac{T_{8}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} + M\frac{T_{8}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma^{\perp \perp'}\gamma_{5}N^{+} \right)_{\gamma} \\ &+ M\frac{T_{7}}{2} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma_{\perp \perp'}C \right)_{\alpha\beta} \left( \sigma_{\perp \perp'}\gamma_{5}N^{+} \right)_{$$

 $[z]_{j',j} d_{\gamma}^{k'}(a_3 z) [a_3 z, a_0 z]_{k',k} |P(P,\lambda)\rangle$ 

 $P_{2}M(\gamma_{5}C)_{\alpha\beta}N_{\gamma}^{-}$   $(^{\perp}\gamma_{5}N^{+})_{\gamma}$   $T_{6}(\not zC)_{\alpha\beta}(\gamma_{5}N^{-})_{\gamma}$   $T_{7}^{+})_{\gamma}$   $T_{\gamma}^{+}\gamma_{5}C)_{\alpha\beta}N_{\gamma}^{-}$   $T_{\gamma}^{-}(i\sigma_{p\,z}C)_{\alpha\beta}(\gamma_{5}N^{+})_{\gamma}$ 

 $\frac{M^2}{2pz}T_6\left(i\sigma_{\perp\,z}C\right)_{\alpha\beta}\left(\gamma^{\perp}\gamma_5N^{-}\right)_{\gamma}$ 

 $V^{-}\Big)_{\gamma},\qquad(2.9)$ 

Braun, Fries, Mahnke, Stein, hep-ph/0007279, NPB 2000

### Light-Cone Distribution Amplitudes: proton

### • Twist-3 LCDAs

$$\begin{split} V_1(x_i) =& 120x_1x_2x_3[\phi_3^0 + \phi_3^+(1 - 3x_3)], \\ A_1(x_i) =& 120x_1x_2x_3(x_2 - x_1)\phi_3^-, \\ T_1(x_i) =& 120x_1x_2x_3[\phi_3^0 + \frac{1}{2}(\phi_3^- - \phi_3^+)(1 - 3x_3)]. \end{split}$$

• Twist-4 LCDAs

$$\begin{split} V_2(x_i) &= 24x_1x_2[\phi_4^0 + \phi_4^+(1-5x_3)], \\ V_3(x_i) &= 12x_3[\psi_4^0(1-x_3) + \psi_4^-(x_1^2 + x_2^2 - x_3(1-x_3)) + \psi_4^+(1-x_3-10x_1x_2)], \\ A_2(x_i) &= 24x_1x_2(x_2 - x_1)\phi_4^-, \\ A_3(x_i) &= 12x_3(x_2 - x_1)[(psi_4^0 + \psi_4^+) + \psi_4^-(1-2x_3)], \\ T_2(x_i) &= 24x_1x_2[\xi_4^0 + \xi_4^+(1-5x_3)], \\ T_3(x_i) &= 6x_3[(\xi_4^0 + \phi_4^0 + \psi_4^0)(1-x_3) + (\xi_4^- + \phi_4^- - \psi_4^-)(x_1^2 + x_2^2 - x_3(1-x_3)) \\ &\quad + (\xi_4^+ + \phi_4^+ + \psi_4^+)(1-x_3-10x_1x_2)], \\ T_7(x_i) &= 6x_3[(-\xi_4^0 + \phi_4^0 + \psi_4^0)(1-x_3) + (-\xi_4^- + \phi_4^- - \psi_4^-)(x_1^2 + x_2^2 - x_3(1-x_3)) \\ &\quad + (-\xi_4^+ + \phi_4^+ + \psi_4^+)(1-x_3-10x_1x_2)], \\ S_1(x_i) &= 6x_3(x_2 - x_1)[(\xi_4^0 + \phi_4^0 + \psi_4^0 + \xi_4^+ + \phi_4^+ + \psi_4^+) + (\xi_4^- - \phi_4^- - \psi_4^-)(1-2x_3)], \\ P_1(x_i) &= 6x_3(x_2 - x_1)[(\xi_4^0 - \phi_4^0 - \psi_4^0 + \xi_4^+ - \phi_4^+ - \psi_4^+) + (\xi_4^- - \phi_4^- + \psi_4^-)(1-2x_3)]. \end{split}$$

• Twist-5 LCDAs

$$\begin{split} V_4(x_i) &= 3[\psi_5^0(1-x_3) + \psi_5^-(2x_1x_2 - x_3(1-x_3)) + \psi_5^+(1-x_3 - 2(x_1^2 + x_2^2))], \\ V_5(x_i) &= 6x_3[\phi_5^0 + \phi_5^+(1-2x_3)], \\ A_4(x_i) &= 3(x_2 - x_1)[-\psi_5^0 + \psi_5^- x_3 + \psi_5^+(1-2x_3)], \\ A_5(x_i) &= 6x_3(x_2 - x_1)\phi_5^-, \\ T_4(x_i) &= \frac{3}{2}[(\xi_5^0 + \psi_5^0 + \phi_5^0)(1-x_3) + (\xi_5^- + \phi_5^- - \psi_5^-)(2x_1x_2 - x_3(1-x_3)) \\ &\quad + (\xi_5^+ + \phi_5^+ + \psi_5^+)(1-x_3 - 2(x_1^2 + x_2^2))], \\ T_5(x_i) &= 6x_3[\xi_5^0 + \xi_5^+(1-2x_3)], \\ T_8(x_i) &= \frac{3}{2}[(\psi_5^0 + \phi_5^0 - \xi_5^0)(1-x_3) + (\phi_5^- - \phi_5^- - \xi_5^-)(2x_1x_2 - x_3(1-x_3)) \\ &\quad + (\phi_5^+ + \phi_5^+ - \xi_5^+)(\mu)(1-x_3 - 2(x_1^2 + x_2^2))], \\ S_2(x_i) &= \frac{3}{2}(x_2 - x_1)[-(\psi_5^0 + \phi_5^0 + \xi_5^0) + (\xi_5^- + \phi_5^- - \psi_5^0)x_3 + (\xi_5^+ + \phi_5^+ + \psi_5^0)(1-2x_3)], \\ P_2(x_i) &= \frac{3}{2}(x_2 - x_1)[(\psi_5^0 + \phi_5^0 - \xi_5^0) + (\xi_5^- - \phi_5^- + \psi_5^0)x_3 + (\xi_5^+ - \phi_5^+ - \psi_5^0)(1-2x_3)]. \end{split}$$

• Twist-6 LCDAs

$$egin{aligned} V_6(x_i) =& 2[\phi_6^0 + \phi_6^+(1-3x_3)], \ A_6(x_i) =& 2(x_2-x_1)\phi_6^-, \ T_6(x_i) =& 2[\phi_6^0 + rac{1}{2}(\phi_6^- - \phi_6^+)(1-3x_3)], \end{aligned}$$

### Light-Cone Distribution Amplitudes: proton

Table 2: Parameters in the proton LCDAs in units of  $10^{-2}$  GeV<sup>2</sup> [73]. The accuracy of those parameters without uncertainties is of order of 50%.

|                   | $\phi^0_i$     | $\phi_i^-$ | $\phi^+_i$ | $\psi^0_i$      | $\psi_i^-$ | $\psi_i^+$ | $\xi^0_i$     | $\xi_i^-$ | $\xi_i^+$ |
|-------------------|----------------|------------|------------|-----------------|------------|------------|---------------|-----------|-----------|
| twist-3 $(i = 3)$ | $0.53\pm0.05$  | 2.11       | 0.57       |                 |            |            |               |           |           |
| twist-4 $(i = 4)$ | $-1.08\pm0.47$ | 3.22       | 2.12       | $1.61\pm0.47$   | -6.13      | 0.99       | $0.85\pm0.31$ | 2.79      | 0.56      |
| twist-5 $(i = 5)$ | $-1.08\pm0.47$ | -2.01      | 1.42       | $1.61 \pm .047$ | -0.98      | -0.99      | $0.85\pm0.31$ | -0.95     | 0.46      |
| twist-6 $(i = 6)$ | $0.53\pm0.05$  | 3.09       | -0.25      |                 |            |            |               |           |           |

### Parameters of LCDAs of proton

| Model | Method     | $\begin{array}{c} f_N \cdot 10^3 \\ \text{Gev}^2 \end{array}$ | $\lambda_1 \cdot 10^3$ Gev <sup>2</sup> | $\lambda_2 \cdot 10^3$ Gev <sup>2</sup> | <b>A</b> <sup><b>u</b></sup> <sub>1</sub> | V <sup>d</sup> <sub>1</sub> | <i>f</i> <sup><i>u</i></sup> <sub>1</sub> | <i>f</i> <sup><i>d</i></sup> <sub>1</sub> | <b>f</b> <sup>d</sup> <sub>2</sub> | Ref. |
|-------|------------|---------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------|-------------------------------------------|-------------------------------------------|------------------------------------|------|
|       | QCDSR      | 5.0(5)                                                        | -27(9)                                  | 54(19)                                  |                                           |                             |                                           |                                           |                                    |      |
| ASY   |            | -                                                             | -                                       | -                                       | 0                                         | 1/3                         | 1/10                                      | 3/10                                      | 4/15                               |      |
| CZ    | QCDSR      | 5.3(5)                                                        | -                                       | -                                       | 0.47                                      | 0.22                        | -                                         | -                                         | -                                  | [1]  |
| KS    | QCDSR      | 5.1(3)                                                        | -                                       | -                                       | 0.34                                      | 0.24                        | -                                         | -                                         | -                                  | [2]  |
| COZ   | QCDSR      | 5.0(3)                                                        | -                                       | -                                       | 0.39                                      | 0.23                        | -                                         | -                                         | -                                  | [3]  |
| SB    | QCDSR      | -                                                             | -                                       | -                                       | 0.38                                      | 0.24                        | -                                         | -                                         | -                                  | [4]  |
| BK    | PQCD       | 6.64                                                          | -                                       | -                                       | 0.08                                      | 0.31                        | -                                         | -                                         | -                                  | [5]  |
| BLW   | QCDSR      | -                                                             | -                                       | -                                       | 0.38(15)                                  | 0.23(3)                     | 0.07(5)                                   | 0.40(20)                                  | 0.22(5)                            | [6]  |
| BLW   | LCSR (LO)  | -                                                             | -                                       | -                                       | 0.13                                      | 0.30                        | 0.09                                      | 0.33                                      | 0.25                               | [6]  |
| ABO1  | LCSR (NLO) | -                                                             | -                                       | -                                       | 0.11                                      | 0.30                        | 0.11                                      | 0.27                                      | -                                  | [7]  |
| ABO2  | LCSR (NLO) |                                                               |                                         |                                         | 0.11                                      | 0.30                        | 0.11                                      | 0.29                                      | -                                  | [7]  |
| LAT09 | LATTICE    | 3.23<br>(63)                                                  | -35.57<br>(65)                          | 70.02<br>(13)                           | 0.19<br>(2)                               | 0.20<br>(1)                 | -                                         | -                                         | -                                  | [8]  |
| LAT14 | LATTICE    | 3.07<br>(36)                                                  | -38.77<br>(18)                          | 77.64<br>(37)                           | 0.07<br>(4)                               | 0.31<br>(2)                 | -                                         | -                                         | -                                  | [9]  |
| LAT19 | LATTICE    | 3.54 (6)                                                      | -44.9<br>(42)                           | 93.4<br>(48)                            | 0.30<br>(32)                              | 0.192<br>(22)               | -                                         | -                                         | -                                  | [10] |

thanks to K.S.Huang



### Reference

- [1] V. Chernyak and I. Zhitnitsky, Nucl. Phys. B246, 52 (1984).
- I. King and C. T. Sachrajda, Nucl.Phys. B279, 785 (1987). [2]
- [3] V. Chernyak, A. Ogloblin, and I. Zhitnitsky, Z.Phys. C42, 569 (1989).
- [4] N. Stefanis and M. Bergmann, Phys.Rev. D47, 3685 (1993), hep-ph/9211250.
- [5] J. Bolz and P. Kroll, Z.Phys. A356, 327 (1996), hepph/9603289.
- [6] V. Braun, A. Lenz, and M. Wittmann, Phys.Rev. D73, 094019 (2006), hep-ph/0604050
- [7] I. Anikin, V. Braun, and N. Offen, Phys.Rev. D88, 114021 (2013), 1310.1375.
- [8] V. M. Braun et al. (QCDSF Collaboration), Phys.Rev. D79, 034504 (2009), 0811.2712.
- [9] V.M. Braun, S. Collins, B. Gl<sup>"</sup>aßle, M. G<sup>"</sup>ockeler, A. Sch<sup>"</sup>afer, R.W. Schiel, W. S<sup>"</sup>oldner, A. Sternbeck, P. Wein, Phys. Rev. D89, 094511 (2014)

QCD. Eur. Phys. J. A, 55(7):116, 2019.

[10] Gunnar S. Bali et al. Light-cone distribution amplitudes of octet baryons from lattice