

NLO Results With Operator Mixing For Fully Heavy Tetraquarks In QCD Sum Rules

Ren-Hua Wu (吴仁华)

Peking University

July 29, 2022

Based on this paper:

R.H. Wu, Y.S. Zuo(左羽生), C.Y. Wang(王辰宇), Y.Q. Ma(马港青),

C. Meng(孟策), K.T. Chao(赵光达); arXiv:2201.11714[hep-ph]

第四届重味物理和量子色动力学研讨会

Outline

Fully Heavy Tetraquarks Mass Spectra

- \succ $\overline{c}c\overline{c}c$ Mass Spectra
- $\succ \overline{b}b\overline{b}b$ Mass Spectra

Background

New Hadron States

• X(6900)

2022/07/29

Theoretical Works for $\overline{Q}Q\overline{Q}Q$ system

Models and tools

- QCD sum rules W. Chen et. al., (2017); Z.G. Wang (2020); R.M. Albuquerque and S. Narison (2020)
- Lattice QCD C. Hughes et. al., (2017)
- Potential Models Y. Iwasaki (1975); K.T. Chao (1981); Richard J. Lloyd, et. al. (2004); J. Wu, et. al.,(2018); Y. Bai et. al., (2016); M. Karliner, et. al. (2017); V.R. Debastiani (2019); M.S. Liu et. al., (2019)

• *cccc* System

- Exist bound states below $\frac{1}{\psi}/\psi$ L. Heller, et. al., (1985); Z.G. Wang (2020);...
- Do not exist bound states below $\frac{J/\psi J/\psi}{J}$ J. Ader, et. al., (1982); W. Chen, et. Al., (2019)...

• $\overline{b}b\overline{b}b$ System

- Exist bound states below <u>η_bη_b</u> Y. Bai, et. al., (2016); W. Chen, et. al., (2019)...
- **Do not exist bound states below** $\underline{\eta}_b \underline{\eta}_b$ **C.** Hughes, et. al., (2017);

2022/07/29

\overline{Q}Q\overline{Q}Q System study in QCD sum rules - **LO**

• Moment QCD sum rules

J^{PC}	Currents	$m_{X_c}(\text{GeV})$	$m_{X_b}(\text{GeV})$
0^{++}	J_1	6.44 ± 0.15	18.45 ± 0.15
	J_2	6.59 ± 0.17	18.59 ± 0.17
	J_3	6.47 ± 0.16	18.49 ± 0.16
	J_4	6.46 ± 0.16	18.46 ± 0.14
	J_5	6.82 ± 0.18	19.64 ± 0.14
0^{-+}	J_1^+	6.84 ± 0.18	18.77 ± 0.18
	J_2^+	6.85 ± 0.18	18.79 ± 0.18
0	J_1^-	6.84 ± 0.18	18.77 ± 0.18
1^{++}	$J_{1''}^{+}$	6.40 ± 0.19	18.33 ± 0.17
	$J^{\mu }_{2 \mu}$	6.34 ± 0.19	18.32 ± 0.18
1^{+-}	$J_{1\mu}^{-}$	6.37 ± 0.18	18.32 ± 0.17
	$J_{2\mu}^{+}$	6.51 ± 0.15	18.54 ± 0.15
1-+	$J_{1''}^{+}$	6.84 ± 0.18	18.80 ± 0.18
	$J_{2\mu}^{+}$	6.88 ± 0.18	18.83 ± 0.18
1	$J^{-}_{1\mu}$	6.84 ± 0.18	18.77 ± 0.18
	$J_{2\mu}^{-}$	6.83 ± 0.18	18.77 ± 0.16
2++	$J_{1\mu u}$	6.51 ± 0.15	18.53 ± 0.15
	$J_{2\mu u}$	6.37 ± 0.19	18.32 ± 0.17

 $M_Y(\text{GeV})$ $cc\bar{c}\bar{c}(0^{++})$ 5.99 ± 0.08 $cc\bar{c}\bar{c}(1^{+-1})$ 6.05 ± 0.08 $cc\bar{c}\bar{c}(2^{++})$ 6.09 ± 0.08 $bbbb(0^{++})$ 18.84 ± 0.09 $bb\bar{b}\bar{b}(1^{+-})$ 18.84 ± 0.09 $bb\overline{b}\overline{b}(2^{++})$ 18.85 ± 0.09 $cc\bar{c}\bar{c}(1^{--}$ 6.11 ± 0.08 $bb\overline{b}\overline{b}(1^{--}$ 18.89 ± 0.09

• Laplace QCD sum rules

	M_X (GeV)	$M_X \ ({\rm GeV})$
0^{++} case A	6.44 ± 0.11	18.38 ± 0.11
0^{++} case B	6.87 ± 0.10	18.50 ± 0.10
0^{++} case C	6.52 ± 0.11	18.44 ± 0.10
0^{++} case D	6.96 ± 0.11	18.59 ± 0.11

Bo-Cheng Yang et. al., 2020

0 ⁺⁺ case 1	$6.44_{-0.16}^{+0.15}$
0 ⁺⁺ case 2	$6.45_{-0.16}^{+0.14}$
0 ⁺⁺ case 3	$6.46_{-0.17}^{+0.13}$
0 ⁺⁺ case 4	$6.47^{+0.12}_{-0.18}$

Jian-Rong Zhang, 2020

W. Chen, et. al., 2019

Zhi-Gang Wang, 2018

J^{PC}	$M_1(\text{GeV})[7]$
0^{++}	5.99 ± 0.08
1+-	6.05 ± 0.08
2^{++}	6.09 ± 0.08
1	6.11 ± 0.08

Zhi-Gang Wang, 2020

2022/07/29

$\overline{Q}Q\overline{Q}Q$ System study in QCD sum rules - NLO

• NLO corrections are non-negligible

 $\int \Xi_{cc}^{++}$: C.Y. Wang, et. al., PRD(2019) Ω_{000} : R.H. Wu, et. al., CPC(2021)

• NLO corrections with $\overline{Q}Q\overline{Q}Q$ System

Lack of complete NLO corrections to C_1 !

2022/07/29

Heavy Flavor Physics and QCD

 19717 ± 118

 6471 ± 67

 $A_q A_q$

QCD sum rules

Correlation function:

$$\Pi(\mathbf{p}^2) = \mathbf{i} \int \mathbf{d}^4 \mathbf{x} \, \mathbf{e}^{\mathbf{i}\mathbf{p}\cdot\mathbf{x}} \, \left\langle \Omega | \, \mathcal{T}_1(\mathbf{x}) \mathcal{T}_2^{+}(\mathbf{0}) \, | \Omega \right\rangle \qquad \qquad \mathcal{T} = (\bar{c}_i \Gamma_1 c_i) (\, \bar{c}_j \Gamma_2 c_j)$$

➢ Källén − Lehmann representation

$$\Pi(p^2) = \int_0^\infty ds \frac{\rho(s)}{s - p^2 - i\epsilon}$$

The mass of ground state

$$\rho(s) = \sum_{i} \lambda_{i} \,\delta(s - M_{i}^{2}) + \rho_{cont}(s) \,\theta(s - s_{h})$$

$$\approx \lambda_{H} \,\delta(s - M_{H}^{2}) + \tilde{\rho}_{cont}(s) \,\theta(s - s_{h})$$

(OPE, Borel transform, Quark-Hadron Duality...)

$$M_{H}^{2} = \frac{\int_{s_{th}}^{s_{0}} ds \, Im[C_{1}(s)] \, s \, e^{-s/M_{B}^{2}} + \int_{s_{th}}^{\infty} ds \, Im[C_{GG}(s)] \, s \, e^{-s/M_{B}^{2}} \langle GG \rangle}{\int_{s_{th}}^{s_{0}} ds \, Im[C_{1}(s)] \, e^{-s/M_{B}^{2}} + \int_{s_{th}}^{\infty} ds \, Im[C_{GG}(s)] \, e^{-s/M_{B}^{2}} \langle GG \rangle}$$

Borel Platform

The point where the parameter dependence of M_H is weakest within Borel windows

$$\Delta(x,y) = \left(\frac{\partial M_H}{\partial x}\right)^2 + \left(\frac{\partial M_H}{\partial y}\right)^2 \qquad (x = s_0, y = M_B^2)$$

Heavy Flavor Physics and QCD

to.

cccc Mass Spectra

 $\blacksquare J^{PC} = 0^{++}$

- Meson-Meson type Operators
- Diquark- Antidiquark type Operator

$$\mathcal{J}_{\mathrm{M-M}} = (\bar{Q}_{i}\Gamma_{1}Q_{i})(\bar{Q}_{j}\Gamma_{2}Q_{j}) \qquad (\Gamma_{1},\Gamma_{2}) = \begin{pmatrix} (\gamma^{\mu},\gamma_{\mu}) \\ (\gamma^{\mu}\gamma^{5},\gamma_{\mu}\gamma^{5}) \\ (1,1) \\ (i\gamma^{5},i\gamma^{5}) \\ (\sigma^{\mu\nu},\sigma_{\mu\nu}) \end{pmatrix}$$
$$\mathcal{J}_{\mathrm{Di-Di}} = (Q_{i}^{T} \mathcal{C} \Gamma_{1} Q_{j})(\bar{Q}_{i} \Gamma_{2} \mathcal{C} \bar{Q}_{j}^{T})$$

1

• Diagonalized operator

$$\mathcal{J}_{\text{Dia}} = \text{T}_{\cdot}\mathcal{J}_{\text{M}-\text{M}}$$

Reducing renormalization scale μ dependence

$$\delta \begin{pmatrix} -6 & -2 & -12 & -12 & 0 \\ -2 & -6 & 12 & 12 & 0 \\ 0 & 0 & 26 & 6 & \frac{1}{3} \\ 0 & 0 & -40 & 40 & -\frac{68}{3} \end{pmatrix}$$

$$Diagonalization = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{3} & -\frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -\frac{15}{\sqrt{241}} & \frac{15}{\sqrt{241}} & \frac{1}{2} - \frac{8}{\sqrt{241}} \end{pmatrix}$$

$$T = \begin{pmatrix} \frac{15}{\sqrt{241}} & \frac{15}{\sqrt{241}} & \frac{1}{2} - \frac{8}{\sqrt{241}} \\ 0 & 0 & \frac{15}{\sqrt{241}} & \frac{15}{\sqrt{241}} & \frac{1}{2} + \frac{8}{\sqrt{241}} \end{pmatrix}$$

$$\begin{pmatrix} -6 & 0 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 & 0 \\ 0 & 0 & 24 & 0 & 0 \\ 0 & 0 & 0 & -1 + \sqrt{241} & 0 \\ 0 & 0 & 0 & 0 & -1 - \sqrt{241} \end{pmatrix}$$

$$\frac{\text{The anomalous}}{\text{dimension matrix of } \mathcal{J}_{Dia}}$$

2022/07/29

Heavy Flavor Physics and QCD

8/16

1

■ The Borel Platform Curves - *cccc*

2022/07/29

\succ J^{PC} = 0⁺⁺ Diagonalized Operators

•	\overline{MS}	流算符	LO	$NLO(\overline{MS})$
		$J_{S,1}^{Dia}$	$6.18\substack{+0.08\\-0.10}$	$7.81^{+0.14}_{-0.16}$
		$J_{S,2}^{Dia}$	$6.19\substack{+0.07\\-0.12}$	$6.95_{-0.12}^{+0.10}$
		J ^{Dia} J _{S,3}	$5.93^{+0.07}_{-0.10}$	$6.35_{-0.13}^{+0.06}$
		$J_{S,4}^{Dia}$	$6.02\substack{+0.05\\-0.06}$	$6.56\substack{+0.10\\-0.12}$
		$J_{\mathcal{S},5}^{Dia}$	$6.33^{+0.12}_{-0.14}$	$7.72^{+0.13}_{-0.14}$
•	0S	法省次	10	

•	OS	流算符	LO	NLO(OS)
		$J_{S,1}^{Dia}$	$7.36_{-0.10}^{+0.07}$	$6.60\substack{+0.09\\-0.12}$
		$J_{\mathcal{S},2}^{Dia}$	$7.31^{+0.08}_{-0.12}$	$6.58^{+0.08}_{-0.11}$
		$J_{\mathcal{S},3}^{\text{Dia}}$	$7.06\substack{+0.07\\-0.10}$	$6.47^{+0.08}_{-0.10}$
		$J_{S,4}^{Dia}$	$7.16^{+0.04}_{-0.05}$	$6.49^{+0.07}_{-0.10}$
		$J_{\mathcal{S},5}^{Dia}$	$7.44_{-0.14}^{+0.12}$	$6.62^{+0.09}_{-0.13}$

LO VS NLO

NLO corrections are significant.

- $\left| M_{H}^{NLO} M_{H}^{LO} \right| > 0.5 \text{ GeV}$
- Below or above $\underline{\eta_c \eta_c}$?

 $\blacklozenge \overline{MS} \lor S OS$

The **scheme dependence** is **reduced** observably.

$$\left| M_{\rm H}^{\overline{\rm MS}, \ {
m LO}} - M_{\rm H}^{{
m OS}, \ {
m LO}} \right| > 1 \ {
m GeV}$$

•
$$\left| M_{H}^{\overline{\text{MS}}, \text{ NLO}} - M_{H}^{\text{OS}, \text{NLO}} \right| \sim 0.5 \text{ GeV}$$

 Before VS After (Diagonalization)

• The problem that Oversize NLO

corrections are improved

2022/07/29

Heavy Flavor Physics and QCD

\blacksquare The renormalization scale μ dependence

The NLO contributions significantly improve μ dependence of hadron mass m_H

2022/07/29

Heavy Flavor Physics and QCD

cccc̄ Mass Spectra

2022/07/29

Heavy Flavor Physics and QCD

bbbb Mass Spectra

• The Borel Platform Curves - $\overline{b}\overline{b}\overline{b}b$

\succ J^{PC} = 0⁺⁺ Diagonalized Operators

• <u>MS</u>	流算符	LO	$NLO(\overline{MS})$
	$J_{\mathcal{S},1}^{Dia}$	$18.51_{-0.26}^{+0.17}$	$19.01\substack{+0.05 \\ -0.10}$
	$J_{S,2}^{Dia}$	$18.51\substack{+0.17\\-0.26}$	$18.97\substack{+0.06\\-0.11}$
	J ^{Dia} J _{S,3}	$18.50\substack{+0.18\\-0.26}$	$18.96\substack{+0.05\\-0.11}$
	$J_{S,4}^{Dia}$	$18.50\substack{+0.17\\-0.26}$	$18.97\substack{+0.06\\-0.11}$
	J ^{Dia} J _{S,5}	$18.51\substack{+0.17\\-0.26}$	$18.95\substack{+0.08\\-0.14}$

•	OS	流算符	LO	NLO(OS)
		$J_{\mathcal{S},1}^{\text{Dia}}$	$19.68\substack{+0.04\\-0.10}$	$18.98\substack{+0.07\\-0.28}$
		$J_{S,2}^{Dia}$	$19.67\substack{+0.04 \\ -0.10}$	$18.98\substack{+0.07\\-0.28}$
		$J_{\mathcal{S},3}^{\text{Dia}}$	$19.64\substack{+0.02\\-0.06}$	$18.98\substack{+0.07\\-0.36}$
		$J_{S,4}^{Dia}$	$19.61\substack{+0.07 \\ -0.14}$	$18.98\substack{+0.07\\-0.33}$
		$J_{\mathcal{S},5}^{\mathrm{Dia}}$	$19.66\substack{+0.08\\-0.15}$	$18.98\substack{+0.07\\-0.26}$

♦ LO VS NLO

NLO corrections are significant.

- $\left| M_H^{NLO} M_H^{LO} \right| \sim 0.5 \text{ GeV}$
- No oversize NLO corrections
- NLO results are above $\underline{\eta_b \eta_b}$

$\bullet \overline{MS}$ VS OS

The renormalization scheme dependence is <u>reduced.</u>

•
$$\left| M_{H}^{\overline{MS}, \ LO} - M_{H}^{OS, \ LO} \right| \sim 1 \ \text{GeV}$$

•
$$\left| M_{H}^{\overline{MS}, NLO} - M_{H}^{OS, NLO} \right| \sim 0.1 \text{GeV}$$

Problem
<u>Perturbative Convergence</u>

Heavy Flavor Physics and QCD

■ bbbb Mass Spectra

2022/07/29

Heavy Flavor Physics and QCD

Summary

NLO corrections and operator mixing are important and non-negligibel

- <u>Large corrections to hadron masses</u> M_H $(|M_H^{NLO} M_H^{LO}| > 0.5 GeV).$
- Improving the quality of the <u>Borel platform</u> evidently. ($\overline{b}b\overline{b}b$ system)
- Reducing the <u>renormalization scale μ </u> dependence.
- Reducing the <u>scheme</u> dependence.

$$\begin{cases} \left| M_{H}^{\overline{MS}, LO} - M_{H}^{OS, LO} \right| > 1 \text{ GeV} \\ \left| M_{H}^{\overline{MS}, NLO} - M_{H}^{OS, NLO} \right| \sim 0.5 \text{ GeV} \end{cases}$$

ēcccc Mass Spectra

- Do not exist bound states below $I/\psi I/\psi$
- $I_{S,3}^{\text{Dia}}$ and $I_{S,4}^{\text{Dia}}$ with $J^{PC} = 0^{++}$ may explain the broad structure
- $J_{S,3}^{\text{Dia}}$ with $J^{PC} = 0^{++}$ and $J_{T,1}^{\text{Dia}}$ with $J^{PC} = 2^{++}$ may be candidates of the X(6900).
- ♦ bbbb Mass Spectra

Thanks!

- <u>Bad perturbative convergence</u> and <u>large errors</u>. (near-threshold resummation?)
- There may not exist bound states below $\underline{\eta}_b \underline{\eta}_b$ (Based on current results without resummation).

2022/07/29

QCD sum rules

Correlation function:
$$\Pi(\mathbf{p}^2) = \mathbf{i} \int \mathbf{d}^4 x \, e^{\mathbf{i}\mathbf{p}\cdot\mathbf{x}} \, \langle \Omega | \, \mathcal{T}_1(\mathbf{x}) \mathcal{T}_2^+(\mathbf{0}) \, | \Omega \rangle$$

 $\mathcal{T} = (\bar{c}_i \Gamma_1 c_i) (\, \bar{c}_j \Gamma_2 c_j)$

1. Källén – Lehmann representation

 $\rho(s)$: physical spectrum density

$$\Pi(p^2) = \int_0^\infty ds \frac{\rho(s)}{s - p^2 - i\epsilon} \qquad \rho(s) = \sum_i \lambda_i \,\delta(s - M_i^2) + \rho_{cont}(s) \,\theta(s - s_h) \\ \approx \lambda_H \,\delta(s - M_H^2) + \rho_{cont}(s) \,\theta(s - s_h)$$

2. Dispersion relation

$$\Pi(p^2) = \frac{1}{\pi} \int_{s_{th}}^{\infty} ds \frac{\operatorname{Im} \Pi(s+i\epsilon)}{s-p^2}$$
$$\int_{0}^{\infty} ds \frac{\rho(s)}{s-p^2-i\epsilon} = \frac{1}{\pi} \int_{s_{th}}^{\infty} ds \frac{\operatorname{Im} \Pi(s)}{s-p^2-i\epsilon}$$

2022/07/29

3. Borel Transform

• Why?

$$\Pi(p^2) = \int_0^\infty ds \frac{\rho(s)}{s - p^2 - i\epsilon} = \frac{1}{\pi} \int_{s_{th}}^\infty ds \frac{\operatorname{Im} \Pi(s)}{s - p^2 - i\epsilon}$$

To suppress the contributions from <u>high excited states</u> and <u>continuum</u>
 To suppress the <u>great circle contribution</u> in contour integral

Borel Transform

$$\widehat{\mathcal{B}}[t, M_B^2] F(t) = \lim_{\substack{-t, n \to \infty \\ -\frac{t}{n} \to M_B^2}} \frac{(-t)^{n+1}}{n!} \left(\frac{d}{dt}\right)^n F(t)$$

$$\widehat{\mathcal{B}}[\boldsymbol{p^2}, M_B^2] \boldsymbol{\Pi}(\boldsymbol{p^2}) = \int_0^\infty ds \, \boldsymbol{\rho}(\boldsymbol{s}) \, \boldsymbol{e^{-s/M_B^2}} = \frac{1}{\pi} \int_{s_{th}}^\infty ds \, \mathrm{Im}[\Pi(s)] \, \boldsymbol{e^{-s/M_B^2}}$$

2022/07/29

4. Operator Product Expand (OPE)

•
$$\widetilde{\mathcal{T}}(p^2) = i \int d^4 x \, e^{ip \cdot x} \, \mathcal{T}_1(x) \mathcal{T}_2^+(0)$$

$$\lim_{p^2 \to -\infty} \widetilde{\mathcal{T}}(p^2) = \sum_i C_i(p^2) \, O_i$$

$$= C_1 + C_{qq} \, \bar{q}q + C_{GG} \, GG \cdots$$

•
$$\Pi(p^2) = \langle \Omega | \widetilde{T}(p^2) | \Omega \rangle$$

= $C_1 + C_{qq} \langle \Omega | \bar{q}q | \Omega \rangle + C_{GG} \langle \Omega | GG | \Omega \rangle + C_{qqG} \langle \Omega | \bar{q}qG | \Omega \rangle + \cdots$
 $\approx C_1 + C_{GG} \langle \Omega | GG | \Omega \rangle$ Up to dimention 4

 $\frac{\Lambda_{QCD}^2}{p^2}$

2022/07/29

Heavy Flavor Physics and QCD

5. Quark-Hadron Duality (QHD)

QHD:
$$\int_{s_h}^{\infty} ds \frac{\rho_{cont}(s)}{s-p^2} = \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{Im[C_1(s)]}{s-p^2}$$

$$\lambda_{H} e^{-M_{H}^{2}/M_{B}^{2}} + \int_{s_{h}}^{\infty} ds \,\rho_{cont}(s) e^{-s/M_{B}^{2}} = \frac{1}{\pi} \int_{s_{th}}^{\infty} ds \,(Im[C_{1}(s)] + Im[C_{GG}(s)]\langle GG \rangle) \,e^{-s/M_{B}^{2}}$$

$$QHD$$

$$\lambda_{H} e^{-M_{H}^{2}/M_{B}^{2}} = \frac{1}{\pi} \int_{s_{th}}^{s_{0}} ds \,Im[C_{1}(s)] \,e^{-s/M_{B}^{2}} + \frac{1}{\pi} \int_{s_{th}}^{\infty} ds \,Im[C_{GG}(s)] \,\langle GG \rangle \,e^{-s/M_{B}^{2}}$$

6. Hadron Mass

$$M_{H}^{2} = \frac{\int_{s_{th}}^{s_{0}} ds \, Im[C_{1}(s)] \, s \, e^{-\frac{s}{M_{B}^{2}}} + \int_{s_{th}}^{\infty} ds \, Im[C_{GG}(s)] \, s \, e^{-\frac{s}{M_{B}^{2}}} \langle GG \rangle}{\int_{s_{th}}^{s_{0}} ds \, Im[C_{1}(s)] \, e^{-\frac{s}{M_{B}^{2}}} + \int_{s_{th}}^{\infty} ds \, Im[C_{GG}(s)] \, e^{-\frac{s}{M_{B}^{2}}} \langle GG \rangle}$$

2022/07/29

- (1). To get amplitudes of C_1 and C_{GG} [FeynArts] J. Kublbeck, et al, (1990); T. Hahn (2000)
- 2. To simplify spinor structures of C_i [FeynCalc] R. Mertig, et al, (1991); V. Shtabovenko, (2016)
- (3). To reduce all loop integrals to a linear combination of master integrals (\tilde{I}_i):

 $Int = \sum_{i} a_{i} \tilde{I}_{i} \quad [REDUZE] \qquad A. von Manteuffel, et al, (2012)$

(4). To calculate master integrals: Defferential equation (DE) $\tilde{I}_{i}(\epsilon, s, r = \frac{m^{2}}{s}) = s^{d} \sum_{a,b,n} c_{abm} r^{a+b\epsilon} \epsilon^{n}$ A. V. Kotikov, (1991); Z. Bern, et al, (1993); E. Remiddi, et al, (1997); T. Gehrmann, et al, (2000) X. Liu, et al, (2017)

(5). Renormalization (for C_1 NLO)

2022/07/29

7. Borel Windows

$$M_{H}^{2} = \frac{\int_{s_{th}}^{s_{0}} ds \, Im[C_{1}(s)] \, s \, e^{-\frac{s}{M_{B}^{2}}} + \int_{s_{th}}^{\infty} ds \, Im[C_{GG}(s)] \, s \, e^{-\frac{s}{M_{B}^{2}}} \langle GG \rangle}{\int_{s_{th}}^{s_{0}} ds \, Im[C_{1}(s)] \, e^{-\frac{s}{M_{B}^{2}}} + \int_{s_{th}}^{\infty} ds \, Im[C_{GG}(s)] \, e^{-\frac{s}{M_{B}^{2}}} \langle GG \rangle}$$

- the validity of OPE
- the ground-state contribution dominance

To constrain the range of s_0 and M_B^2

(called Borel windows)

$$r_{cont} = \left| \frac{\int_{s_0}^{\infty} ds \, Im[C_1(s)] \, e^{-\frac{s}{M_B^2}}}{\int_{s_{th}}^{\infty} ds \, Im[C_1(s)] \, e^{-\frac{s}{M_B^2}}} \right| \le 30\%$$

$$r_{GG} = \left| \frac{\int_{s_{th}}^{\infty} ds \, Im[C_{GG}(s)] \, e^{-\frac{s}{M_B^2}} \langle GG \rangle}{\int_{s_{th}}^{\infty} ds \, Im[C_1(s)] \, e^{-\frac{s}{M_B^2}}} \right| \le 30\%$$

8. Borel Platform

The point where the parameter dependence of M_H is weakest within Borel windows

$$\Delta(x,y) = \left(\frac{\partial M_H}{\partial x}\right)^2 + \left(\frac{\partial M_H}{\partial y}\right)^2 \qquad (x = s_0, y = M_B^2)$$

■ *c̄cc̄c* Numerical results

> $J^{PC} = 0^{++}$ Meson-Meson type operators $(\bar{c}_i \Gamma_1 c_i)(\bar{c}_j \Gamma_2 c_j)$

•	<u>MS</u>	流算符	LO	NLO(<u>MS</u>)
		$J_{S,1}^{M-M}$	$6.16\substack{+0.08\\-0.10}$	$7.32^{+0.09}_{-0.11}$
		$J_{S,2}^{M-M}$	$6.38^{+0.09}_{-0.15}$	$8.33_{-0.15}^{+0.13}$
		$J_{S,3}^{M-M}$	$7.11_{-0.15}^{+0.13}$	$7.91^{+0.16}_{-0.19}$
		$J_{S,4}^{M-M}$	$5.90^{+0.06}_{-0.08}$	$6.36^{+0.06}_{-0.10}$
		$J_{S,5}^{M-M}$	$6.28^{+0.13}_{-0.17}$	$7.78^{+0.13}_{-0.13}$
•	• <i>OS</i>	流算符	LO	NLO(OS)
		M - M	z = -z + 0.07	0.00
		$J_{S,1}$	$7.35_{-0.10}^{+0.07}$	$6.60^{+0.09}_{-0.12}$
		J _{S,1} J _{S,2}	$7.35_{-0.10}^{+0.07}$ $7.44_{-0.15}^{+0.12}$	$6.60_{-0.12}^{+0.09}$ $6.60_{-0.15}^{+0.09}$
		$J_{S,1}^{M-M}$ $J_{S,2}^{M-M}$ $J_{S,3}^{M-M}$	$7.35_{-0.10}^{+0.07}$ $7.44_{-0.15}^{+0.12}$ $8.43_{-0.18}^{+0.14}$	$6.60_{-0.12}^{+0.09}$ $6.60_{-0.15}^{+0.09}$ $7.40_{-0.21}^{+0.15}$
		$J_{S,1}^{M-M}$ $J_{S,2}^{M-M}$ $J_{S,3}^{M-M}$ $J_{S,4}^{M-M}$	$7.35_{-0.10}^{+0.07}$ $7.44_{-0.15}^{+0.12}$ $8.43_{-0.18}^{+0.14}$ $7.05_{-0.09}^{+0.06}$	$6.60_{-0.12}^{+0.09}$ $6.60_{-0.15}^{+0.09}$ $7.40_{-0.21}^{+0.15}$ $6.44_{-0.09}^{+0.08}$

LO VS NLO

NLO corrections are significant.

•
$$\left| M_{\rm H}^{\rm NLO} - M_{\rm H}^{\rm LO} \right| > 0.5$$
 GeV

Worst: $\sim 2 \text{ GeV}$

Below or above <u>η_cη_c</u>?

 $\bullet \overline{MS}$ VS OS

The <u>scheme dependence</u> is <u>reduced</u> observably.

•
$$\left| M_{\mathrm{H}}^{\overline{\mathrm{MS}}, \mathrm{LO}} - M_{\mathrm{H}}^{\mathrm{OS}, \mathrm{LO}} \right| > 1 \mathrm{GeV}$$

• $\left| M_{\rm H}^{\overline{\rm MS}, \, \rm NLO} - M_{\rm H}^{\rm OS, \rm NLO} \right| \sim 0.5 \, {\rm GeV}$

2022/07/29

> $J^{PC} = 0^{++}$ diquark - antidiquark type operators $(c_i^T C \Gamma_1 c_j) (\bar{c}_i \Gamma_2 C \bar{c}_j^T)$

• <u>MS</u>	流算符	LO	$NLO(\overline{MS})$
	$J_{S,1}^{Di-Di}$	$6.07\substack{+0.05\\-0.07}$	$6.60^{+0.09}_{-0.10}$
	$J_{S,2}^{Di-Di}$	$6.19\substack{+0.07\\-0.12}$	$6.90^{+0.11}_{-0.12}$
	J ^{Di–Di} S,3	$6.96\substack{+0.11\\-0.14}$	$9.25_{-0.14}^{+0.14}$
	J ^{Di–Di} S,4	$6.17\substack{+0.07 \\ -0.12}$	$7.36^{+0.10}_{-0.11}$
	$J_{S,5}^{Di-Di}$	$6.07\substack{+0.08 \\ -0.10}$	$6.69^{+0.10}_{-0.12}$

• <i>OS</i>	流算符	LO	NLO(OS)
	$J_{S,1}^{Di-Di}$	$7.23^{+0.04}_{-0.07}$	$6.54\substack{+0.06 \\ -0.08}$
	$J_{S,2}^{Di-Di}$	$7.27^{+0.08}_{-0.11}$	$6.52\substack{+0.10 \\ -0.14}$
	J ^{Di–Di} S,3	$8.17\substack{+0.15 \\ -0.19}$	$7.19_{-0.26}^{+0.16}$
	$J_{S,4}^{Di-Di}$	$7.31^{+0.08}_{-0.11}$	$6.59^{+0.09}_{-0.12}$
	$J_{S,5}^{Di-Di}$	$7.22^{+0.08}_{-0.12}$	$6.51\substack{+0.09\\-0.13}$

♦ LO VS NLO

NLO corrections are significant.

• $\left| M_{\rm H}^{\rm NLO} - M_{\rm H}^{\rm LO} \right| > 0.5 \; {\rm GeV}$

Worst: $\sim 2 \text{ GeV}$

• Below or above $\eta_c \eta_c$?

 $\clubsuit \overline{MS}$ VS OS

The <u>scheme dependence</u> is reduced observably.

$$\bullet \left| \mathsf{M}_{\mathrm{H}}^{\overline{\mathrm{MS}},\,\mathrm{LO}} - \mathsf{M}_{\mathrm{H}}^{\mathrm{OS},\,\mathrm{LO}} \right| > 1 \; \mathrm{GeV}$$

$$\bullet \left| M_{H}^{\overline{\text{MS}}, \text{ NLO}} - M_{H}^{\text{OS}, \text{NLO}} \right| {\sim} 0.5 \text{ GeV}$$

2022/07/29

Heavy Flavor Physics and QCD

Error

Current	Order	Mu (GeV)	e_{0} (CeV ²)	M^2 (CeV ²)	Error from	Error from	Error from
	Order	MH (Gev)	30 (Gev)	M_B (GeV)	s_0 and M_B^2	m_Q	μ
7 Dia	$\mathrm{LO}(\overline{\mathrm{MS}})$	$6.19\substack{+0.26 \\ -0.23}$	$51(\pm 10\%)$	$3.50(\pm 10\%)$	$^{+0.07}_{-0.12}$	$^{+0.11}_{-0.14}$	$^{+0.22}_{-0.23}$
	$\rm NLO(\overline{\rm MS})$	$6.95\substack{+0.21 \\ -0.31}$	$61(\pm 10\%)$	$5.00(\pm 10\%)$	$^{+0.10}_{-0.12}$	$^{+0.15}_{-0.13}$	$^{+0.11}_{-0.26}$
0 <u>S</u> ,2	$\mathrm{LO}(\mathrm{OS})$	$7.31\substack{+0.29 \\ -0.24}$	$64 (\pm 10\%)$	$3.75(\pm 10\%)$	$^{+0.08}_{-0.12}$	$^{+0.28}_{-0.21}$	
	NLO(OS)	$6.58\substack{+0.28\\-0.29}$	48(±10%)	$2.00(\pm 10\%)$	$^{+0.08}_{-0.11}$	$^{+0.27}_{-0.27}$	
					E	E	E
Current	Order	M_H (GeV)	$s_0 \; (\text{GeV}^2)$	$M_B^2 ~({\rm GeV^2})$	Error from M^2	Error from	Error from
					s_0 and M_B^2	m_Q	μ
	$\mathrm{LO}(\overline{\mathrm{MS}})$	$5.93\substack{+0.31\\-0.26}$	$45(\pm 10\%)$	$3.00(\pm 10\%)$	$^{+0.07}_{-0.10}$	$^{+0.18}_{-0.09}$	$^{+0.24}_{-0.22}$
J_{a}^{Dia}	$\rm NLO(\overline{MS})$	$6.35\substack{+0.20 \\ -0.17}$	$51(\pm 10\%)$	$3.50(\pm 10\%)$	$^{+0.08}_{-0.13}$	$^{+0.18}_{-0.11}$	$^{+0.00}_{-0.03}$
° S,3	LO(OS)	$7.06\substack{+0.32 \\ -0.26}$	$60(\pm 10\%)$	3.00(±10%)	$^{+0.07}_{-0.10}$	$^{+0.31}_{-0.24}$	
	NLO(OS)	$6.47\substack{+0.29 \\ -0.30}$	46(±10%)	$1.75(\pm 10\%)$	$^{+0.08}_{-0.10}$	$^{+0.28}_{-0.28}$	
					Error from	Error from	Fror from
Current	Order	M_H (GeV)	$s_0 \; (\text{GeV}^2)$	$M_B^2 \ (\text{GeV}^2)$	so and M^2		
					of and mB	mQ	μ
	$LO(\overline{MS})$	$6.02_{-0.28}^{+0.24}$	$49(\pm 10\%)$	$3.00(\pm 10\%)$	$^{+0.05}_{-0.06}$	$^{+0.09}_{-0.14}$	$^{+0.22}_{-0.23}$
$J_{S,4}^{\rm Dia}$	$\rm NLO(\overline{MS})$	$6.56\substack{+0.18 \\ -0.20}$	$55(\pm 10\%)$	$4.00(\pm 10\%)$	$^{+0.10}_{-0.12}$	$^{+0.15}_{-0.13}$	$^{+0.03}_{-0.10}$
	LO(OS)	$7.16\substack{+0.24 \\ -0.30}$	$66(\pm 10\%)$	$3.00(\pm 10\%)$	$^{+0.04}_{-0.05}$	$^{+0.24}_{-0.30}$	
	NLO(OS)	$6.49\substack{+0.29\\-0.30}$	$46(\pm 10\%)$	$1.75(\pm 10\%)$	$^{+0.07}_{-0.10}$	$^{+0.28}_{-0.28}$	

Heavy Flavor Physics and QCD

2022/07/29

Perturbative Convergence—4c

• <u>MS</u>

The renormalization scale μ dependence

2022/07/29

■ $J^{PC} = 0^{++}$ Meson-Meson type operators

\overline{MS}	流算符	LO	$NLO(\overline{MS})$
	$J_{S,1}^{M-M}$	$18.51_{-0.26}^{+0.17}$	$19.00\substack{+0.05\\-0.10}$
	$J_{S,2}^{M-M}$	$18.55^{+0.19}_{-0.26}$	$18.92\substack{+0.10\\-0.17}$
	$J_{S,3}^{M-M}$	$19.21\substack{+0.20\\-0.26}$	$19.66\substack{+0.05\\-0.10}$
	$J_{S,4}^{M-M}$	$18.50\substack{+0.17\\-0.26}$	$18.97\substack{+0.05 \\ -0.11}$
	$J_{S,5}^{M-M}$	$18.51\substack{+0.17\\-0.26}$	$18.93\substack{+0.09\\-0.11}$
• <i>OS</i>	流算符	LO	NLO(OS)
	$J_{S,1}^{M-M}$	$19.68\substack{+0.04 \\ -0.10}$	$18.98\substack{+0.07 \\ -0.28}$
	$J_{S,2}^{M-M}$	$19.68\substack{+0.04 \\ -0.10}$	$18.98\substack{+0.07\\-0.28}$
	$J_{S,3}^{M-M}$	$20.51\substack{+0.05 \\ -0.18}$	$19.51 \substack{+0.72 \\ -1.55}$
	$J_{S,4}^{M-M}$	$19.64^{+0.02}_{-0.06}$	$18.98\substack{+0.07\\-0.35}$
	$J_{S,5}^{M-M}$	$19.71\substack{+0.03 \\ -0.08}$	$18.98\substack{+0.07\\-0.28}$

◆ LO VS NLO

- 次领头阶修正明显
 |M_H^{NLO} M_H^{LO}|~ 0.5 GeV
- 相比于4c体系没有过大修正
- 修正之后, α_{η_b} 阈值之上

 $\clubsuit \overline{MS}$ VS OS

结果对重整化方案依赖性显著降低
• $\left| M_{H}^{\overline{MS}, LO} - M_{H}^{OS, LO} \right| \sim 1 \text{ GeV}$ • $\left| M_{H}^{\overline{MS}, NLO} - M_{H}^{OS, NLO} \right| \sim 0.1 \text{GeV}$

2022/07/29

Heavy Flavor Physics and QCD

The renormalization scale μ dependence

2022/07/29

Heavy Flavor Physics and QCD