

- Triangle Singularity in the Production of T_{cc}^{+} and a Soft Pion
 - 报告人: 蒋军

In collabaration with Eric Braaten, Liping He (何丽萍) and Kevin Ingles Based on arXiv:2202.03900 (accepted by PRD)

CONTENTS

- 1 Introduction
- Coupled-channel Model

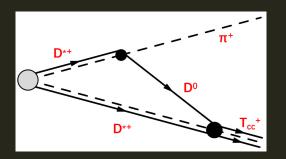
- Production of T_{cc}^{+} & Soft Pion
 - 4 Summary & Discussion

Triangle Singularity

- Kinematic singularity if three charm mesons in the loop are on their mass shells simultaneously.
- - $T_{cc}{}^{\scriptscriptstyle +}$

Triangle Singularity

 $E_{\triangle +} \longrightarrow (M_T/2M)\delta_{0+} = 6.1 \text{ MeV}$



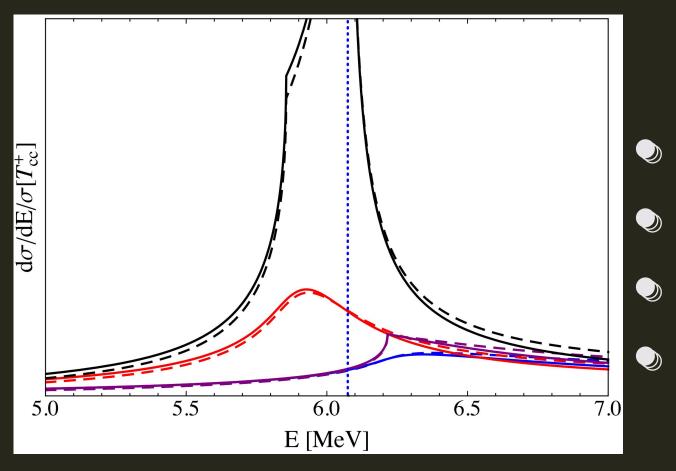
$$T_{+}(q^{2}, \gamma^{2}) = \left(1 + \frac{mb}{2M_{T}c}\right) \frac{1}{\sqrt{c}} \log \frac{\sqrt{a} + \sqrt{c} + \sqrt{a+b+c}}{\sqrt{a} - \sqrt{c} + \sqrt{a+b+c}} + \frac{m}{M_{T}c} \left(\sqrt{a} - \sqrt{a+b+c}\right)$$

$$E_{\triangle+} = \frac{M_*}{4\mu^2} \left(\sqrt{2\mu E_+ - \gamma^2} - i\sqrt{m/M_T} \, \gamma \right)^2 \quad \text{where} \quad E_+ = \delta_{0+} - \varepsilon_T - i \, \Gamma_{*+}$$

- Log divergence in the limit of both binding energy and decay width go to zero.
 - Square-root branch point at $E = E_+$ from the \sqrt{a} term.
 - Limiting behaviour of $T_+(q^2, \gamma^2)$ determined by the interplay of above two items.

Triangle Singularity

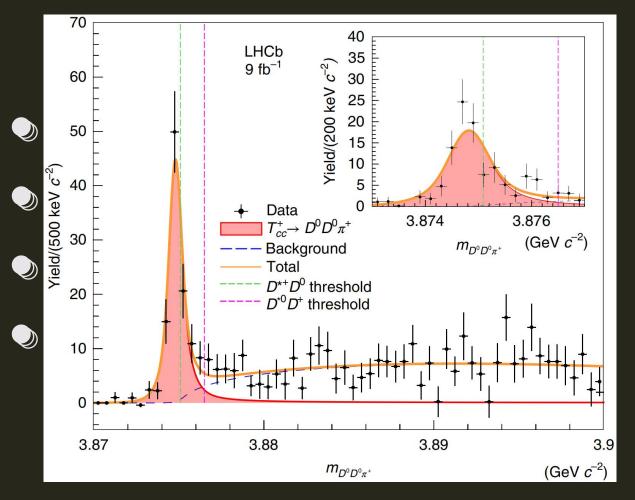
- \bigcirc Black $(|\varepsilon_T|, \Gamma_{*+}) = (0, 0)$
- Purple $(|\varepsilon_T|, \Gamma_{*+}) = (360 \text{ keV}, 0)$



Solid: complete amplitude

Dashed: logarithmic approximation

T_{cc}^{+} (3875) or T_{cc1}^{f} (3875)+



LHCb, Nature Physics 18, 751 (2022) LHCb, Nature Commun. 13, 3351 (2022)

Binding Enegy & Width

$$\delta m_{\rm BW} = -273 \pm 61 \pm 5 ^{+11}_{-14} \,\text{keV}\,c^{-2}$$

$$\Gamma_{\rm BW} = 410 \pm 165 \pm 43 \, ^{+18}_{-38} \, {\rm keV},$$

$$\delta m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \,\text{keV}/c^2,$$

$$\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV},$$

Characteristic Size

$$R_a \equiv -\Re a = 7.16 \pm 0.51 \,\text{fm}$$

$$R_{\Delta E} \equiv \frac{1}{\gamma} = 7.5 \pm 0.4 \,\mathrm{fm}$$

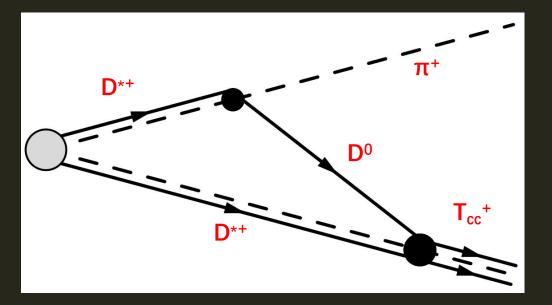
JP & 1

$$J^P=1^+$$

$$I = 0$$

Motivation

- Along with above mesearments, observation of the narrow peak from triangle singularity would support D^*D molecule picture of T_{cc}^+ .
 - Better candidate as a loosely bound S-wave molecule than *X(3872)*?



XEFT

- Effective field theory for charm mesons and pions
- Validity: kinetic energy of pions $\sim m_\pi$, kinetic energy of charm mesons $\sim m_\pi^2/M \sim 10 MeV$

XEFT

- Effective field theory for charm mesons and pions
- Validity: kinetic energy of pions $\sim m_\pi$, kinetic energy of charm mesons $\sim m_\pi^2/M \sim 10 MeV$
- Galilean-invariant formulation of XEFT: conservation of pion and (anti)charm numbers, conservation of kinetic masses
- Pion number: sum of the numbers of π , D^* , \overline{D}^* mesons

Fleming, Kusunoki, Mehen and Van Kolck, PRD 76, 034006 (2007)

Braaten, PRD 91, 114007 (2015)
Braaten, He, Jiang, PRD 103, 036014 (2021)

Wavefunction for loosely bound S-wave molecule

Sharp UV cutoff

Spatial wavefunction:

$$\psi(r) = \frac{\sqrt{\gamma/2\pi}}{r} \exp(-\gamma r)$$

Momentum-space:

$$\psi(k) = \frac{\sqrt{8\pi\gamma}}{k^2 + \gamma^2}$$

Binding momentum: $\gamma = \sqrt{2\mu|\varepsilon|}$

Braaten, Hammer, Phys. Rept. 428, 259 (2006)

Wavefunction for loosely bound S-wave molecule

Sharp UV cutoff

Spatial wavefunction:

$$\psi(r) = \frac{\sqrt{\gamma/2\pi}}{r} \exp(-\gamma r)$$

Momentum-space:

$$\psi(k) = \frac{\sqrt{8\pi\gamma}}{k^2 + \gamma^2}$$

UV divergent integral:

$$\psi(r=0) = \int d^3k \, \psi(k)/(2\pi)^3$$

Sharp momentum cutoff:

$$|\mathbf{k}| < (\pi/2)\Lambda \text{ with } \Lambda \gg \gamma$$

At the origin:

$$\psi(r=0) = (\Lambda - \gamma)\sqrt{\gamma/2\pi}.$$

Binding momentum: $\gamma = \sqrt{2\mu|\varepsilon|}$.

Braaten, Hammer, Phys. Rept. 428, 259 (2006)

Wavefunction for loosely bound S-wave molecule

Smooth UV cutoff

Smooth momentum cutoff:

$$\psi^{(\Lambda)}(k) = \frac{\sqrt{8\pi(\Lambda + \gamma)\Lambda\gamma}}{\Lambda - \gamma} \left(\frac{1}{k^2 + \gamma^2} - \frac{1}{k^2 + \Lambda^2} \right)$$

At the origin:

$$\psi^{(\Lambda)}(r=0) = \sqrt{(\Lambda+\gamma)\Lambda\gamma/2\pi}$$

$$\psi^{(\Lambda)}(k) \longrightarrow \sqrt{8\pi(\Lambda+\gamma)^3\Lambda\gamma}/k^4$$

Binding momentum: $\gamma = \sqrt{2\mu|\varepsilon|}$. Suzuki, PRD 72, 114013 (2005)

Wavefunction for loosely bound S-wave molecule

Smooth UV cutoff

Smooth momentum cutoff:

$$\psi^{(\Lambda)}(k) = \frac{\sqrt{8\pi(\Lambda + \gamma)\Lambda\gamma}}{\Lambda - \gamma} \left(\frac{1}{k^2 + \gamma^2} - \frac{1}{k^2 + \Lambda^2} \right)$$

At the origin:

$$\psi^{(\Lambda)}(r=0) = \sqrt{(\Lambda+\gamma)\Lambda\gamma/2\pi}$$

At large k:

$$\psi^{(\Lambda)}(k) \longrightarrow \sqrt{8\pi(\Lambda+\gamma)^3\Lambda\gamma}/k^4$$

Why?

Same momentum dependence at small k

More physical qualitative behavior at large k, so we can make preditions.

Binding momentum: $\gamma = \sqrt{2\mu|\varepsilon|}$. Suzuki, PRD 72, 114013 (2005)

Isoscalar
$$T_{cc}^+$$
: $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$

Coupled-channel wavefunction

$$\psi_{\rm cc}^{(\Lambda)}(k) = \frac{\sqrt{8\pi(\Lambda + \gamma)\Lambda\gamma}}{\Lambda - \gamma_{cc}} \left(\frac{1}{k^2 + \gamma_{\rm cc}^2} - \frac{1}{k^2 + \Lambda^2}\right)$$

$$\gamma_{\rm cc} = \sqrt{2\mu(\delta + |\varepsilon|)}$$

Isoscalar
$$T_{cc}^+$$
: $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$

Coupled-channel wavefunction

$$\psi_{\rm cc}^{(\Lambda)}(k) = \frac{\sqrt{8\pi(\Lambda + \gamma)\Lambda\gamma}}{\Lambda - \gamma_{cc}} \left(\frac{1}{k^2 + \gamma_{\rm cc}^2} - \frac{1}{k^2 + \Lambda^2}\right)$$

$$\gamma_{\rm cc} = \sqrt{2\mu(\delta + |\varepsilon|)}$$

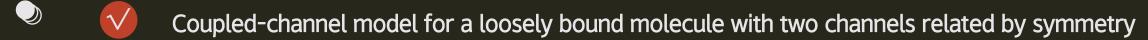
- Coupled-channel model for a loosely bound molecule with two channels related by symmetry
- $\psi_{\rm cc}^{(\Lambda)}(r=0) = \psi^{(\Lambda)}(r=0)$

Isoscalar
$$T_{cc}^+$$
: $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$

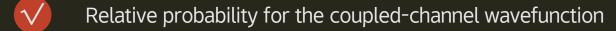
Coupled-channel wavefunction

$$\psi_{\rm cc}^{(\Lambda)}(k) = \frac{\sqrt{8\pi(\Lambda + \gamma)\Lambda\gamma}}{\Lambda - \gamma_{cc}} \left(\frac{1}{k^2 + \gamma_{\rm cc}^2} - \frac{1}{k^2 + \Lambda^2}\right)$$

$$\gamma_{\rm cc} = \sqrt{2\mu(\delta + |\varepsilon|)}$$



$$\psi_{\rm cc}^{(\Lambda)}(r=0) = \psi^{(\Lambda)}(r=0)$$



$$Z_{\rm cc} \equiv \int \frac{d^3k}{(2\pi)^3} |\psi_{\rm cc}^{(\Lambda)}(k)|^2 = \frac{(\Lambda + \gamma)\gamma}{(\Lambda + \gamma_{\rm cc})\gamma_{\rm cc}}$$

$$A = m_{\pi}/2$$
, m_{π} , $2m_{\pi}$, $Z_{0+} = 0$. 34, 0. 38, 0. 41, respectively.

Isoscalar
$$T_{cc}^+$$
: $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$

"Feynman rules": smooth cutoff + coupled channel

- $D^{*+}D^0$ configuration, D^0 propagator replacement
 - $\frac{1}{k^2 + \gamma^2} \longrightarrow \frac{1}{\sqrt{1 + Z_{0+}}} \frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\Lambda \gamma} \left(\frac{1}{k^2 + \gamma^2} \frac{1}{k^2 + \Lambda^2} \right)$
- $D^{*0}D^+$ configuration, D^+ propagator replacement
- $\frac{1}{k^2 + \gamma_{0+}^2} \longrightarrow -\frac{1}{\sqrt{1 + Z_{0+}}} \frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\Lambda \gamma_{0+}} \left(\frac{1}{k^2 + \gamma_{0+}^2} \frac{1}{k^2 + \Lambda^2} \right)$

Isoscalar
$$T_{cc}^+$$
: $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$

"Feynman rules": smooth cutoff + coupled channel

- $D^{*+}D^0$ configuration, D^0 propagator replacement
 - $\frac{1}{k^2 + \gamma^2} \longrightarrow \frac{1}{\sqrt{1 + Z_{0+}}} \frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\Lambda \gamma} \left(\frac{1}{k^2 + \gamma^2} \frac{1}{k^2 + \Lambda^2} \right)$
- $D^{*0}D^+$ configuration, D^+ propagator replacement
 - $\frac{1}{k^2 + \gamma_{0+}^2} \longrightarrow -\frac{1}{\sqrt{1 + Z_{0+}}} \frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\Lambda \gamma_{0+}} \left(\frac{1}{k^2 + \gamma_{0+}^2} \frac{1}{k^2 + \Lambda^2} \right)$
 - Same vertices for $D^{*+}D^0 T_{cc}^+$ and $D^{*0}D^+ T_{cc}^+$

3 Production of T_{cc}^{+} & Soft Pion

$D^{*+}D^0$ channel only

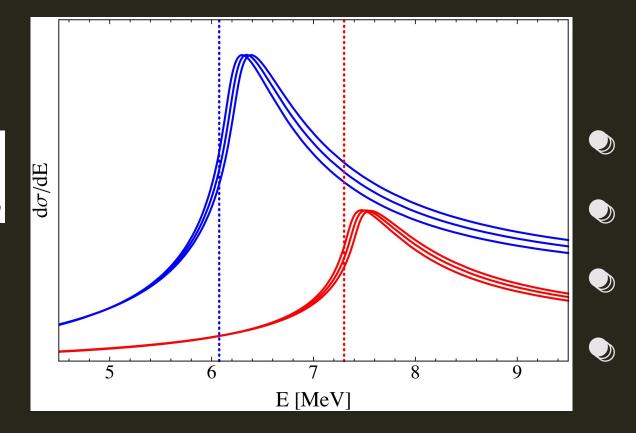
Triangle Singularity

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{+}] = \left\langle \mathcal{A}_{D^{+}D^{0}} \left(\mathcal{A}_{D^{+}D^{0}} \right)^{*} \right\rangle \frac{G_{\pi}^{2} M_{T} m \gamma_{T}}{4\pi^{2}} (2\mu_{\pi T} E)^{3/2} \left| T_{+} (2\mu_{\pi T} E, \gamma^{2}) \right|^{2},$$

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{0}] = \left\langle \mathcal{A}_{D^{+}D^{0}} \left(\mathcal{A}_{D^{+}D^{0}} \right)^{*} \right\rangle \frac{3G_{\pi}^{2} M_{T} m \gamma_{T}}{32\pi^{2}} (2\mu_{\pi T} E)^{3/2} \left| T_{0} (2\mu_{\pi T} E, \gamma^{2}) \right|^{2},$$

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{0}] = \left\langle \mathcal{A}_{D^{+}D^{0}} \left(\mathcal{A}_{D^{+}D^{0}} \right)^{*} \right\rangle \frac{3G_{\pi}^{2}M_{T}m\gamma_{T}}{32\pi^{2}} (2\mu_{\pi T}E)^{3/2} \left| T_{0}(2\mu_{\pi T}E, \gamma^{2}) \right|^{2}$$

where
$$\left\langle \mathcal{A}_{D^+D^0} \left(\mathcal{A}_{D^+D^0} \right)^* \right\rangle \equiv \frac{1}{\text{flux}} \sum_y \int d\Phi_{(DD)+y} \mathcal{A}_{D^+D^0+y} \left(\mathcal{A}_{D^+D^0+y} \right)^*$$



Binding energies are 320, 360, and 400 keV in order of increasing energy at the peak

3 Production of T_{cc}^{+} & Soft Pion $D^{*+}D^{0}$ channel only

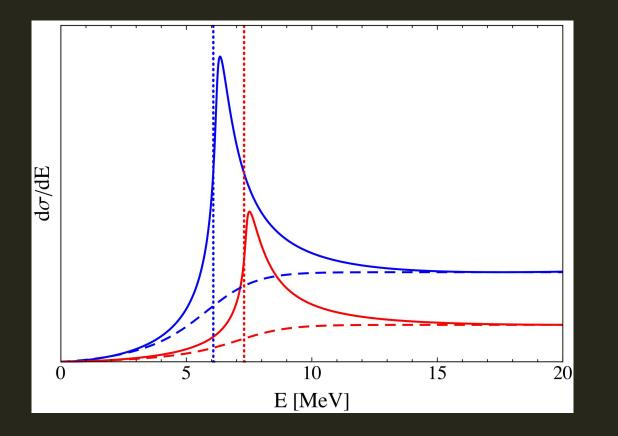
Peaks in the cross sections above background

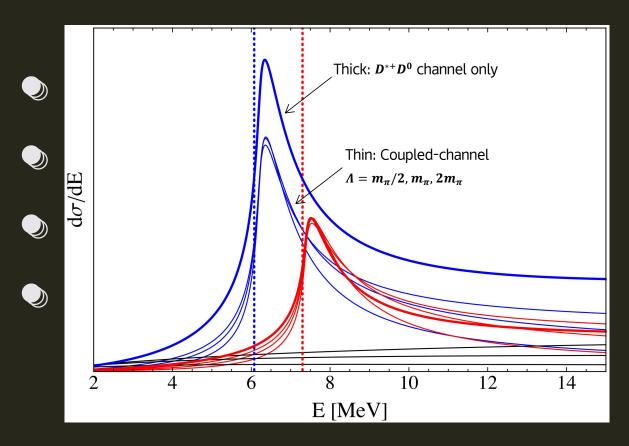
$$\sigma \left[(T_{cc}^{+} \pi^{+})_{\triangle} \right] \approx (8.6 \pm 0.5) \, 10^{-3} \, \left(\frac{m_{\pi}}{\Lambda} \right)^{2} \sigma [T_{cc}^{+}, \text{no } \pi]$$

$$\sigma[(T_{cc}^+ \pi^0)_{\triangle}] \approx (4.8 \pm 0.2) \, 10^{-3} \, \left(\frac{m_{\pi}}{\Lambda}\right)^2 \sigma[T_{cc}^+, \text{no } \pi]$$

Where
$$\sigma[T_{cc}^+, \text{no } \pi] = \left\langle \mathcal{A}_{D^+D^0} (\mathcal{A}_{D^+D^0})^* \right\rangle \frac{3}{2\mu} \left| \psi_T(r=0) \right|^2$$

is cross section for T_{cc}^+ without any pion with relative momentum smaller than a ultraviolet cutoff.





Blue, red and black for $T_{cc}^+\pi^+$, $T_{cc}^+\pi^0$ and $T_{cc}^+\pi^-$, respectively.

Triangle Singularity

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{+}] = \left\langle \mathcal{A}_{D^{+}D^{0}}(\mathcal{A}_{D^{+}D^{0}})^{*} \right\rangle \frac{G_{\pi}^{2}M_{T}m\gamma_{T}}{4\pi^{2}} (2\mu_{\pi T}E)^{3/2} \left| T_{+}^{(\Lambda)}(2\mu_{\pi T}E, \gamma^{2}) \right|^{2},$$

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{0}] = \left\langle \mathcal{A}_{D^{+}D^{0}}(\mathcal{A}_{D^{+}D^{0}})^{*} \right\rangle \frac{3G_{\pi}^{2}M_{T}m\gamma_{T}}{32\pi^{2}} (2\mu_{\pi T}E)^{3/2}$$

$$\times \left(\left| T_{0}^{(\Lambda)}(2\mu_{\pi T}E, \gamma^{2}) \right|^{2} + \left| T_{0}^{'(\Lambda)}(2\mu_{\pi T}E, \gamma_{0+}^{2}) \right|^{2} \right),$$

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{-}] = \left\langle \mathcal{A}_{D^{+}D^{0}}(\mathcal{A}_{D^{+}D^{0}})^{*} \right\rangle \frac{G_{\pi}^{2}M_{T}m\gamma_{T}}{4\pi^{2}} (2\mu_{\pi T}E)^{3/2} \left| T_{-}^{(\Lambda)}(2\mu_{\pi T}E, \gamma_{0+}^{2}) \right|^{2}.$$

No triangle singularity in the production of $T_{cc}^+\pi^-$ channel, because the mass of D^{*0} is 2.4 MeV below $D^+\pi^-$ threshold which prevents the D^{*0} and D^+ from being simultaneously on shell.

Asymptotic behaviors at large *E*

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{+}] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^{+}, \operatorname{no}\pi] \frac{8G_{\pi}^{2}\mu_{\pi T}^{2}\mu_{\pi}}{3\pi} (2\mu_{\pi T}E)^{-1/2},$$

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{+}] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^{+}, \operatorname{no}\pi] \frac{8G_{\pi}^{2}\mu_{\pi T}^{2}\mu_{\pi}}{3\pi} (2\mu_{\pi T}E)^{-1/2},$$

$$\frac{d\sigma}{dE}[T_{cc}^+\pi^0] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^+, \operatorname{no}\pi] \frac{2G_{\pi}^2\mu_{\pi T}^2\mu_{\pi}}{\pi} (2\mu_{\pi T}E)^{-1/2},$$

$$\frac{d\sigma}{dE}[T_{cc}^+\pi^-] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^+, \text{no }\pi] \frac{8G_{\pi}^2\mu_{\pi T}^2\mu_{\pi}}{3\pi} (2\mu_{\pi T}E)^{-1/2}.$$

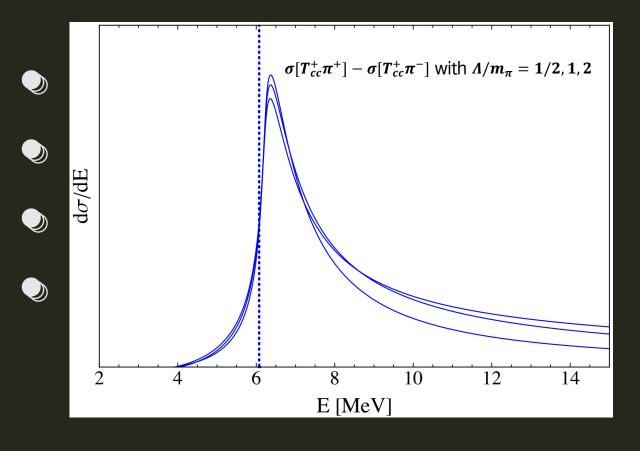
$$igoplus$$
 Cross sections integrated up to E_{max} much larger than triangle-singularity energy

$$\sigma \left[T_{cc}^{+} \pi^{+} \right] \approx \left(3.2 \sqrt{\frac{E_{\text{max}}}{m_{\pi}}} - 0.0_{-1.3}^{+1.8} \right) \times 10^{-2} \, \sigma^{(\Lambda)} \left[T_{cc}^{+}, \text{no } \pi \right],$$

$$\sigma \left[T_{cc}^{+} \pi^{0} \right] \approx \left(2.4 \sqrt{\frac{E_{\text{max}}}{m_{\pi}}} - 0.0_{-1.0}^{+1.3} \right) \times 10^{-2} \, \sigma^{(\Lambda)} \left[T_{cc}^{+}, \text{no } \pi \right],$$

$$\sigma \left[T_{cc}^{+} \pi^{-} \right] \approx \left(3.2 \sqrt{\frac{E_{\text{max}}}{m_{\pi}}} - 1.3_{-0.5}^{+0.3} \right) \times 10^{-2} \, \sigma^{(\Lambda)} \left[T_{cc}^{+}, \text{no } \pi \right].$$

Errors from $\Lambda = 2^{0\pm 1} m_{\pi}$



Peaks in the cross sections above background

$$\sigma [T_{cc}^+ \pi^+] - \sigma [T_{cc}^+ \pi^-] \approx (1.3^{+1.5}_{-0.8}) \times 10^{-2} \sigma^{(\Lambda)} [T_{cc}^+, \text{no } \pi]$$

LHCb data

- 117 ± 16 events
- Inclusive production: $\sigma^{\Lambda}[T_{cc}^+, no \pi] + \sigma[T_{cc}^+\pi^+] + \sigma[T_{cc}^+\pi^0] + \sigma[T_{cc}^+\pi^-]$ with $E < E_{max} = q_{max}^2/(2\mu_{\pi T})$
- Fractions of events for $T_{cc}^+\pi^+$ and $T_{cc}^+\pi^-$: (3.0 $^{+1.5}_{-1.2}$)% and (1.8 $^{+0.2}_{-0.4}$)%, respectively

LHCb data

- Inclusive production: $\sigma^A[T_{cc}^+, no \pi] + \sigma[T_{cc}^+\pi^+] + \sigma[T_{cc}^+\pi^0] + \sigma[T_{cc}^+\pi^-]$ with $E < E_{max} = q_{max}^2/(2\mu_{\pi T})$
- Fractions of events for $T_{cc}^+\pi^+$ and $T_{cc}^+\pi^-$: (3.0 $^{+1.5}_{-1.2}$)% and (1.8 $^{+0.2}_{-0.4}$)%, respectively
- Fractions of events in the peak from triangle singularity for $T_{cc}^+\pi^+$: $(1.2^{+1.3}_{-0.7})\%$ Small but all with energy within 1 MeV of the peak (6.1 MeV above threshold)

Summary

- We used the coupled-channel model to calculate the cross sections for $T_{cc}^+\pi^+$, $T_{cc}^+\pi^0$ and $T_{cc}^+\pi^-$ at energies near the triangle-singularity peaks and at higher energies.

Summary

- We used the coupled-channel model to calculate the cross sections for $T_{cc}^+\pi^+$, $T_{cc}^+\pi^0$ and $T_{cc}^+\pi^-$ at energies near the triangle-singularity peaks and at higher energies.
- Backgrounds can be determined experimentally by measuring $T_{cc}^+\pi^-$ events.
- Fraction of $T_{cc}^+\pi^+$ events in the narrow peak is $(1.2^{+1.3}_{-0.7})\%$, all within 1~MeV of the peak at 6.1~MeV.

Summary

- We used the coupled-channel model to calculate the cross sections for $T_{cc}^+\pi^+$, $T_{cc}^+\pi^0$ and $T_{cc}^+\pi^-$ at energies near the triangle-singularity peaks and at higher energies.
- $extstyle oldsymbol{arphi}$ Backgrounds can be determined experimentally by measuring $T_{cc}^+\pi^-$ events.
- Fraction of $T_{cc}^+\pi^+$ events in the narrow peak is $(1.2^{+1.3}_{-0.7})\%$, all within $1 \, MeV$ of the peak at $6.1 \, MeV$
 - Obervation of the narrow peak of triangle singularity supports molecule picture of T_{cc}^+ .

Discussion

SPS vs DPS

- Calculation based on assumption that charm mesons are created at short distances much smaller than the mean radius $(3.7 \pm 0.2 fm)$ of
- T_{cc}^+

Discussion

SPS vs DPS

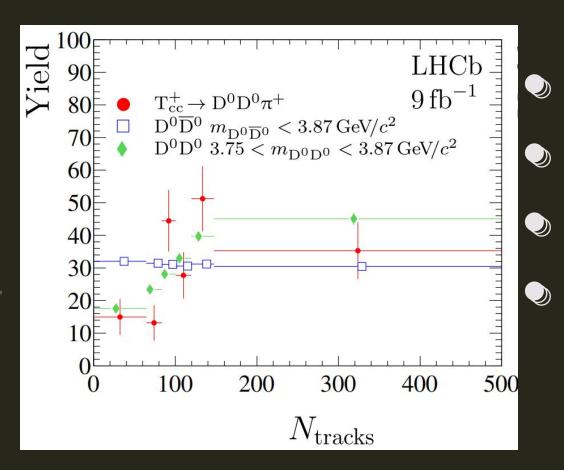
- Calculation based on assumption that charm mesons are created at short distances much smaller than the mean radius $(3.7 \pm 0.2 fm)$ of
- T_{c}^{+}
- In double-parton scattering (DPS), the charm mesons maybe created at distances comparable to the radius of a proton $(\sim 1 fm)$.

Discussion

SPS vs DPS

- Calculation based on assumption that charm mesons are created at short distances much smaller than the mean radius $(3.7 \pm 0.2 fm)$ of T_{as}^+

- In double-parton scattering (DPS), the charm mesons maybe created at distances comparable to the radius of a proton ($\sim 1 fm$).
- 1
- Single-parton scattering (SPS) makes the triangle-singularity peak stand out more clearly above the background.



Discussion

Molecule *vs* Commpact tetraquark

- Well above the triangle singularity energy E_{Δ} , $d\sigma/dE$ for $T_{cc}^{+}\pi^{+}$ decreases as $E^{-1/2}$.

Discussion

Molecule *vs* Commpact tetraquark

- Well above the triangle singularity energy E_{Δ} , $d\sigma/dE$ for $T_{cc}^{+}\pi^{+}$ decreases as $E^{-1/2}$.
- A compact tetraquark T_{cc}^+ would have to have a suppressed coupling to $D^{*+}D^0$.

 Goldstone nature of the pion requires the production amplitude of $T_{cc}^+\pi$ to be proportional to the relative momentum of the pion. Therefore $d\sigma/dE$ should increase like $E^{3/2}$.

Discussion

Molecule *vs* Commpact tetraquark

- Well above the triangle singularity energy E_{Δ} , $d\sigma/dE$ for $T_{cc}^{+}\pi^{+}$ decreases as $E^{-1/2}$.
- A compact tetraquark T_{cc}^+ would have to have a suppressed coupling to $D^{*/\overline{L}}D^0$.

 Goldstone nature of the pion requires the production amplitude of $T_{cc}^+\pi$ to be proportional to the relative momentum of the pion. Therefore $d\sigma/dE$ should increase like $E^{3/2}$.
- Measurements on the differential cross sections above the triangle singularity energy E_{Δ} provide important clues to the nature of T_{cc}^{+} .

Triangle Singularity in the Production of T_{cc}^{+} and a Soft Pion

汇报人: 蒋军

第四届重味物理与量子色动力学研讨会,7.27-7.30, 2022,湖南长沙

Triangle amplitudes

$$T_{+}(q^2, \gamma^2) = \left(1 + \frac{mb}{2M_T c}\right) \frac{1}{\sqrt{c}} \log \frac{\sqrt{a} + \sqrt{c} + \sqrt{a+b+c}}{\sqrt{a} - \sqrt{c} + \sqrt{a+b+c}} + \frac{m}{M_T c} \left(\sqrt{a} - \sqrt{a+b+c}\right)$$

$$a = (\mu/\mu_{\pi})q^{2} - M_{*}E_{+},$$

$$b = -2(\mu/\mu_{\pi})(\mu/M)q^{2} + M_{*}E_{+} - \gamma^{2},$$

$$c = (\mu/M)^2 q^2.$$

 $T_0(q^2, \gamma^2)$ can be obtained by replacing E_+ by E_0 : $E_0 = \delta_{00} - \varepsilon_T - i(\Gamma_{*0} + \Gamma_{*+})/2$

Logarithmic approximationcan

$$T_{+}^{(\log)}(q^{2}, \gamma^{2}) = \sqrt{\frac{M/M_{T}}{\mu_{\pi T}\delta_{0+}}} \left(\frac{2M}{M_{*}} \log \frac{\sqrt{a} + (\mu/M)q + i \gamma}{\sqrt{a} - (\mu/M)q + i \gamma} + \frac{m}{M_{*}} \right)$$

Triangle amplitudes in coupled-channel model

$$T_{+}^{(\Lambda)}(q^{2}, \gamma^{2}) = \frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\sqrt{1 + Z_{0+}}(\Lambda - \gamma)} \left[T_{+}(q^{2}, \gamma^{2}) - T_{+}(q^{2}, \Lambda^{2}) \right]$$

$$T_0^{(\Lambda)}(q^2, \gamma^2) = \frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\sqrt{1 + Z_{0+}}(\Lambda - \gamma)} \left[T_0(q^2, \gamma^2) - T_0(q^2, \Lambda^2) \right]$$

$$T_0^{\prime(\Lambda)}(q^2, \gamma_{0+}^2) = -\frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\sqrt{1 + Z_{0+}}(\Lambda - \gamma_{0+})} \left[T_0(q^2, \gamma_{0+}^2) - T_0(q^2, \Lambda^2) \right]$$

$$T_{-}^{(\Lambda)}(q^2, \gamma_{0+}^2) = -\frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\sqrt{1 + Z_{0+}}(\Lambda - \gamma_{0+})} \left[T_{-}(q^2, \gamma_{0+}^2) - T_{-}(q^2, \Lambda^2) \right]$$

where $T_{-}(q^2, \gamma_{0+}^2)$ can be obtained by the right side of $T_{+}(q^2, \gamma^2)$ with the coefficients

$$a = (\mu/\mu_{\pi})q^{2} - M_{*}E_{-},$$

$$b = -2(\mu/\mu_{\pi})(\mu/M)q^{2} + M_{*}E_{-} - \gamma_{0+}^{2},$$

$$c = (\mu/M)^{2}q^{2}.$$

vith
$$E_{-} = \delta + \delta_{+-} - \varepsilon_{T} - i \Gamma_{*0}$$

with $E_{-} = \delta + \delta_{+-} - \varepsilon_{T} - i \Gamma_{*0}$ and $\delta_{+-} = M_{*0} - M_{+} - m_{-} = -2.38 \text{ MeV}$

Asymptotic behavior of triangle amplitudes at large E

$$T_{+}(q^{2}, \gamma^{2}) \longrightarrow \left(\frac{M}{M_{*}} \log \frac{\sqrt{M_{T}/m} + 1}{\sqrt{M_{T}/m} - 1} + \frac{\sqrt{M_{T}m}}{M_{*}}\right) \frac{1}{q} - \frac{2iM_{T}m\gamma}{M_{*}^{2}q^{2}}$$

- Subtraction cancels the terms that decrease as 1/q, so the triangle amplitude decreases as $1/q^2$:
- $T_{+}^{(\Lambda)}(q^{2},\gamma^{2}) \longrightarrow i \frac{2\sqrt{(\Lambda+\gamma)\Lambda} M_{T} m}{\sqrt{1+Z_{0+}} M_{*}^{2} q^{2}}. \qquad \text{or} \qquad T_{+}^{(\Lambda)}(q^{2},\gamma^{2}) \longrightarrow i \frac{4\mu_{\pi T}}{M_{*}\sqrt{\gamma_{T}/2\pi}} \frac{\psi_{T}^{(\Lambda)}(r=0)}{\sqrt{1+Z_{0+}}} \frac{1}{q^{2}}.$
- We verify that this gives the large- q^2 limit for a general wavefunction with a finite wavefunction at the origin.

Why is smooth cutoff wavefunction more physical at large E?

- We would like to estimate the cross sections at large E, so we should make sure the asymptotic behavior of $d\sigma/dE$ is correct.
- What is correct asymptotic behavior?
 - low-energy scattering of the two particles $f(E) = \frac{1}{-\gamma + \sqrt{-2\mu E}}$ with $E = k^2/(2\mu) + i\epsilon$.

$$\operatorname{Im}[f(E+i\epsilon)] = \frac{\pi\gamma}{\mu}\delta(E+\gamma^2/2\mu) + \frac{\sqrt{2\mu E}}{\gamma^2 + 2\mu E}\theta(E)$$

Delta function: the production of the bound state.

Theta function: the production of the two particles above the threshold, $\propto E^{-1/2}$.

Why is smooth cutoff wavefunction more physical at large E?

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{+}] = \left\langle \mathcal{A}_{D^{+}D^{0}}(\mathcal{A}_{D^{+}D^{0}})^{*} \right\rangle \frac{G_{\pi}^{2}M_{T}m\gamma_{T}}{4\pi^{2}} (2\mu_{\pi T}E)^{3/2} \left| T_{+}^{(\Lambda)}(2\mu_{\pi T}E, \gamma^{2}) \right|^{2}$$

- At large *E*, sinc
- At large E, since $T_+^{(\Lambda)}(q^2,\gamma^2) \longrightarrow i\, \frac{2\sqrt{(\Lambda+\gamma)\Lambda}\,M_T m}{\sqrt{1+Z_{0+}}\,M_\star^2\,q^2}.$

so we have the physical asymptotic behavior:

Q

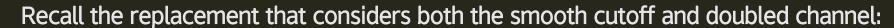
$$\frac{d\sigma}{dE}[T_{cc}^+\pi^+] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^+, \text{no } \pi] \frac{8G_{\pi}^2\mu_{\pi T}^2\mu_{\pi}}{3\pi} (2\mu_{\pi T}E)^{-1/2}$$

Why is smooth cutoff wavefunction more physical at large *E*?

$$T_{+}^{(\Lambda)}(q^{2}, \gamma^{2}) = \frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\sqrt{1 + Z_{0+}}(\Lambda - \gamma)} \left[T_{+}(q^{2}, \gamma^{2}) - T_{+}(q^{2}, \Lambda^{2}) \right]$$

where
$$T_+(q^2,\gamma^2) \longrightarrow \left(\frac{M}{M_*}\log\frac{\sqrt{M_T/m}+1}{\sqrt{M_T/m}-1} + \frac{\sqrt{M_Tm}}{M_*}\right)\frac{1}{q} - \frac{2iM_Tm\gamma}{M_*^2q^2}$$

Subtraction cancels terms that decrease as 1/q, so the triangle amplitude decreases as $1/q^2$



For
$$D^{*+}D^{0}$$
 configuration, D^{0} propagator replacement

For
$$D^{*+}D^{0}$$
 configuration,
$$D^{0} \text{ propagator replacement} \qquad \frac{1}{k^{2} + \gamma^{2}} \longrightarrow \frac{1}{\sqrt{1 + Z_{0+}}} \frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\Lambda - \gamma} \left(\frac{1}{k^{2} + \gamma^{2}} - \frac{1}{k^{2} + \Lambda^{2}} \right)$$

Why is smooth cutoff wavefunction more physical at large E?

- **V**
- Smooth cutoff wavefunction leads the correct asymptotic behavior!
- The D propagator replacement

$$\frac{1}{k^2 + \gamma^2} \longrightarrow \frac{1}{\sqrt{1 + Z_{0+}}} \frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\Lambda - \gamma} \left(\frac{1}{k^2 + \gamma^2} - \frac{1}{k^2 + \Lambda^2} \right)$$

is equivalent to the universal wavefunction replacement

$$\psi(k) = \frac{\sqrt{8\pi\gamma}}{k^2 + \gamma^2} \longrightarrow \psi^{(\Lambda)}(k) = \frac{\sqrt{8\pi(\Lambda + \gamma)\Lambda\gamma}}{\Lambda - \gamma} \left(\frac{1}{k^2 + \gamma^2} - \frac{1}{k^2 + \Lambda^2} \right)$$