Observation of new structures in the $J/\psi J/\psi$ mass spectrum at CMS

张敬庆 南京师范大学

第四届重味物理与量子色动力学研讨会 湖南 长沙 2022.07.27-2022.07.30

Outline

- Introduction
- CMS detector and trigger
- Dataset and MC samples
- CMS result
- Application of LHCb fit models
- Summary

Introduction

- Exotic hadrons (other than $q\bar{q}$ or qqq) has been explored in theory since quark model proposed by Gell-Mann and Zweig.
- X(3872) famous exotic hadron, first observed by Belle, makes searching for exotics in experiment attracting
- Exotics consisting of only (c, b) quarks may offer analogous insights
 - Many theoretical studies just after J/ψ discovery
 - LHCb observed X(6900) in di- J/ψ mass spectrum, Sci. Bull. 65 (2020) 23
- CMS has large dataset for the study of di- J/ψ mass spectrum

CMS detector and trigger

Excellent detectors for (exotic) quarkonium:

- Muon system: High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ψ
- Silicon Tracking detector: B = 3.8 T, $\Delta p_T/p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analyses: μp_T , ($\mu\mu$) p_T /mass/vertex, and additional μ

Dataset and MC samples

- Signal: $J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- Data: 135 fb^{-1} , taken in 2016, 2017 and 2018 LHC runs
- Signal MC samples:
 - $J^P = 0^+$ resonance
 - -- Generator: Pythia8, JHUGen
- Background MC samples:
 - Nonresonant single-parton scattering (NRSPS)
 - -- Generator: Pythia8, HelacOnia (next-to-next-to-leading order), Cascade (next-to-leading order)
 - Nonresonant double-parton scattering (NRDPS)
 - -- Generator: Pythia8

CMS result

- Signal: S-wave Breit-Wigner convolved with resolution function
- Background: NRSPS, NRDPS, and BW0
- Fit range: always fit in [6, 15] GeV; also shown in zoomed projection

BW0 near threshold:

- Significantly needed in the fit
- Various possibilities: resonance, coupled-channel interactions, pomeron exchange processes, inadequacy of our NRSPS model...
- Mass and width vary in a wide range under different situations.
- A region populated by feeddown from possible higher mass states.
- Regard BW0 as background

CMS result

- Statistical significance (likelihood ratio test):
 - Confirmation of BW2[X(6900)], 9.4 σ
 - Observation of BW1, 6.5σ
 - Evidence of BW3, 4.1σ
- More BW2[X(6900)], CMS vs. LHCb: 492 ± 75 vs. 252 ± 63 (model I)

 $95 \pm 46 \pm 20$

 156 ± 56

 $122 \pm 22 \pm 19$

 492 ± 75

т

Г

Ν

BW1

 $124 \pm 29 \pm 34$

 474 ± 113

Systematic uncertainties

• Systematic uncertainties on mass and width

Table 2: Systematic uncertainties on masses and widths, in MeV.

Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	1	< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
momentum scaling	1	3	4	-	-	-
mass resolution	< 1	< 1	< 1	< 1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
efficiency	< 1	< 1	< 1	1	< 1	1
feeddown shape	11	1	1	25	8	6
total	12	5	5	34	19	20

• Local significance with syst. uncertainties by a profiling procedure:

A discrete set of individual alternative signal and background

hypotheses tested in minimization

- BW1 significance: changed from 6.5σ to 5.7σ
- BW2 and BW3 significance: no relative change

M[BW1] = 6552 ± 10 ± 12 MeV	Γ[BW1] = 124 ± 29 ± 34 MeV	X(6900) in LHCb:
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	Γ[BW2] = 122 ± 22 ± 19 MeV	$M = 6905 \pm 11 \pm 7 \text{ MeV}$
M[BW3] = 7287 ± 19 ± 5 MeV	F[BW3] = 95 ± 46 ± 20 MeV	$\Gamma = 80 \pm 19 \pm 33$ MeV
		-

X(6900) reported by LHCb

- In 2020, LHCb reported X(6900) in $J/\psi J/\psi$ final state, Sci. Bull. 65 (2020) 23
- Two different fit models:
 - Model I: background (NRSPS + NRDPS) + 2 auxiliary BWs + X(6900)
 - ➤ Model II: a 'invisible' X(6700) interfere with NRSPS, + NRDPS + X(6900)
- LHCb agnostic on which one is to be preferred
- What happens if apply LHCb models to CMS data
 Model I
 Model I

Fit with LHCb Model I

• NRSPS + NRDPS + 2 auxiliary BWs + X(6900)

• Similar number of final states; CMS has higher muon pT (> 3.5, 2.0 GeV vs. > 0.6 GeV)

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	m(6900)	Γ(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905\pm11\pm7$	$80\pm19\pm33$
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24

Consistent X(6900) mass and width

- CMS data shows a shoulder before BW1
- CMS shoulder helps make BW1 distinct
- Does NOT describe well dips

Fit with LHCb model II

• Incoherent sum of X(6900) and NRDPS + coherent sum of X(6700) and NRSPS

- CMS obtained larger amplitude and natural width for BW1
- CMS X(6600) is 'eaten' does not describe X(6600) and below
- Does not describe X(7300) region
 2022/7/29 第四届重味

Summary

• CMS found 3 significant structures using 135 fb^{-1} 13 TeV data https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-003/index.html

M[BW1] = 6552 ± 10 ± 12 MeV	Γ[BW1] = 124 ± 29 ± 34 MeV	5.7 σ
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	Γ[BW2] = 122 ± 22 ± 19 MeV	9.4 o
M[BW3] = 7287 ± 19 ± 5 MeV	$\Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV}$	4.1 σ

- BW2 consistent with X(6900) reported by LHCb
- Two new structures, provisionally named as X(6600) [BW1], X(7300) [BW3]
- A family of structures which are candidates for all-charm tetra-quarks!
- Dips in data show possible interference effects under study
- More data/knowledge needed to understand nature of near threshold region
- All-heavy quark exotic structures offer system easier to understand
- A new window to understand strong interaction

Thanks!

Backup

Significance with systematics

- To include systematics, alternative resonance/background shapes applied in the fit.
- Calculate signal- and null-hypothesis NLL_syst including systematic using: NLL_(syst-sig) = Min{NLL_(nom-sig), NLL_(alt-i-sig)+0.5+0.5 · △dof}
 NLL_(nom-sig): the NLL of nominal 'signal hypothesis' fit.
 NLL_(alt-i-sig): the NLL of i-th alternative fit of 'signal hypothesis'
 △dof: the additional free parameters comparing to the nominal 'signal hypothesis' fit.
- $NLL_(syst-null) = Min\{NLL_(nom-null), NLL_(alt-j-null)+0.5+0.5 \cdot \Delta dof\}$
- Significance including systematics as usual from NLL_(syst-null)-NLL_(syst-sig)

	Significance with syst.
BW1	5.7 <i>σ</i>
BW2	no sensible changes
BW3	no sensible changes

CMS result with BWO explicitly shown

CMS-PAS-BPH-21-003

J/ψ candidates

Line shape

• S-wave relativistic Breit-Wigner (used in default fit): $BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)}, \text{ where } \Gamma(m) = \Gamma_0 \frac{qm_0}{q_0 m},$

q is the momentum of a daughter in the mother particle rest frame; q_0 means the value at peak position ($m = m_0$).

• NRSPS and NRDPS:

$$f_{NRSPS}(x, x_0, \alpha, p_1, p_2, p_3) = (x - x_0)^{\alpha} \cdot \left(1 - \left(\frac{1}{(15 - x_0)^2} - \frac{p_1}{10}\right) \cdot (15 - x)^2\right) \cdot \exp\left(-\frac{(x - x_0)^{p_3}}{2 \cdot p_2^{p_3}}\right),$$

$$f_{NRDPS}(x, a, p_0, p_1, p_2) = \sqrt{x_t} \cdot \exp(-a \cdot x_t) \cdot \left(p_0 + p_1 \cdot x_t + p_2 \cdot x_t^2\right),$$
where $x_0 = 2m_{J/\psi}, x_t = x - x_0$