Studies of charmed hadrons at BESIII

马海龙 (高能所)

第四届重味物理和量子色动力学研讨会 2022年6月27-30日,湖南长沙

- Motivation
- Data samples
- (Semi)leptonic D decays
- Hadronic D decays
- Charmed baryon A⁺_c decays
- Summary

(Semi)leptonic D decays

探讨夸克和轻子相互作用的理想桥梁, 检验标准模型的理想探针之一

$$T(D^+_{(s)} o \ell^+
u_\ell) = rac{G_F^2 f_{D^+_{(s)}}^2}{8\pi} |V_{cd(s)}|^2 m_\ell^2 m_{D^+_{(s)}} \left(1 - rac{m_\ell^2}{m_{D^+_{(s)}}^2}
ight)^2 \, .$$

- 衰变常数、半轻衰变形状因子
- CKM矩阵元|V_{cs}|、|V_{cd}|
- 分支比之比B_{μ/e}、B_{τ/μ}
 稀有含轻衰变

$$\frac{d\Gamma}{dq^2} = X \frac{G_F^2 |V_{cd(s)}|^2}{24\pi^3} p^3 |f_+(q^2)|^2$$

- →精密刻度格点QCD等计算
- →在更高精密下检验CKM矩阵的幺正性
- →精确检验轻子普适性
- →寻找超出标准模型的新物理效应

Hadronic D decays

In B physics, precision measurements of CP violation phase angles α , β and γ offer powerful tests on the EW theories. Among them, the γ precision is the most urgent

Precision measurements of γ at LHCb and Belle II need input the strong phase differences of neutral D decays

Quantum-correlated $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D}^0$ pairs at BESIII offer an ideal opportunity to extract the strong phase differences between D^0 and \overline{D}^0

In the future 10-15 years, the statistical uncertainties of measuring will reach at ~1.5° and 0.4° at Belle II and LHCb upgrade

The constraint on the γ measurement before BESIII is only 2°, improved measurements of strong phase differences are highly desirable

Charmed baryon Λ_c^+ decays

- Λ_c^+ 是粲重子家族研究的基石;
- BESIII之前,几乎所有实验 结果都是相对Λ⁺_c→pK⁻π⁺的 测量,相对精度>25%;
- •无近阈实验测量;
- >50%的遍举衰变丢失;
- •无末态含中子衰变的测量。

BESIII近國数据为系统研究 Λ_c^+ 衰变 弱衰变机制提供了难得的历史机遇

A+ DECAY MODES		Fraction (Γ _i /Γ)	Scale factor/ Confidence level	<i>Р</i> (MeV/c)
Hadronic modes v	vith	a p: S = -1 fin	al states	
$p\overline{K}^0$		$(2.3 \pm 0.6)\%$	6	873
$pK^{-}\pi^{+}$	[a]	(5.0 \pm 1.3) %	6	823
p K *(892) ⁰	[<i>b</i>]	$(1.6 \pm 0.5)\%$	6	685
$\Delta(1232)^{++}K^{-}$		(8.6 \pm 3.0) \times	10-3	710
$\Lambda(1520)\pi^+$	[<i>b</i>]	$(1.8 \pm 0.6)\%$	6	627
$pK^{-}\pi^{+}$ nonresonant		$(2.8 \pm 0.8)\%$	6	823
$p\overline{K}^0\pi^0$		(3.3 \pm 1.0) %	6	823
$P\overline{K}^{0}\eta$		(1.2 \pm 0.4) %	6	568

Hadronic modes with a hyperon: S = -1 final states

$\Lambda \pi^+$	(1.07± 0.28) %	864				
$\Lambda \pi^+ \pi^0$	$(3.6 \pm 1.3)\%$	844				
$\Lambda \rho^+$	< 5 % CL=95%	636				
$\Lambda \pi^+ \pi^+ \pi^-$	$(2.6 \pm 0.7)\%$	807				
$\Sigma(1385)^+\pi^+\pi^-$, $\Sigma^{*+} \rightarrow$	$(7 \pm 4) \times 10^{-3}$	688				
$\Sigma(1385)^{-}\pi^{+}\pi^{+}, \Sigma^{*-} \rightarrow \Lambda^{\pi^{-}}$	(5.5 \pm 1.7) $\times10^{-3}$	688				
$\Lambda \pi^+ \rho^0$	$(1.1 \pm 0.5)\%$	524				
$\Sigma(1385)^+ \rho^0$, $\Sigma^{*+} \rightarrow \Lambda \pi^+$	$(3.7 \pm 3.1) \times 10^{-3}$	363				
$\Lambda \pi^+ \pi^+ \pi^-$ nonresonant	$< 8 \times 10^{-3}$ CL=90%	6 807				
$\Lambda \pi^+ \pi^+ \pi^- \pi^0$ total	$(1.8 \pm 0.8)\%$	757				
$\Lambda \pi^+ \eta$	[b] (1.8 ± 0.6)%	691				
$\Sigma(1385)^+\eta$	[b] $(8.5 \pm 3.3) \times 10^{-3}$	570				
$\Lambda \pi^+ \omega$	[b] (1.2 ± 0.5)%	517				
$\Lambda \pi^+ \pi^+ \pi^- \pi^0$, no η or ω	$< 7 \times 10^{-3} \text{ CL}=90\%$	6 757				
$\Lambda K^+ \overline{K}^0$	$(4.7 \pm 1.5) \times 10^{-3}$ S=1.2	2 443				
$\Xi(1690)^0 K^+$, $\Xi^{*0} \rightarrow \Lambda \overline{K}^0$	$(1.3 \pm 0.5) \times 10^{-3}$	286				
$\Sigma^0 \pi^+$	$(1.05 \pm 0.28)\%$	825				
$\Sigma^+ \pi^0$	$(1.00 \pm 0.34)\%$	827				
$\Sigma^+ \eta$	$(5.5 \pm 2.3) \times 10^{-3}$	713				
$\Sigma^+\pi^+\pi^-$	$(3.6 \pm 1.0)\%$	804				
$\Sigma^+ \rho^0$	< 1.4 % CL=95%	6 575				
$\Sigma^{-}\pi^{+}\pi^{+}$	$(1.7 \pm 0.5)\%$	799				
$\Sigma^0 \pi^+ \pi^0$	$(1.8 \pm 0.8)\%$	803				
$\Sigma^{0}\pi^{+}\pi^{+}\pi^{-}$	$(8.3 \pm 3.1) \times 10^{-3}$	763				
$\Sigma^+ \pi^+ \pi^- \pi^0$	_	767				
$\Sigma^+\omega$	[b] (2.7 \pm 1.0) %	569				
Semileptonic modes						
$\Lambda \ell^+ \nu_\ell$	[c] (2.0 ± 0.6)%	871				
$\Lambda e^+ \nu_e$	$(2.1 \pm 0.6)\%$	871				
$\Lambda \mu^+ \nu_{\mu}$	$(2.0 \pm 0.7)\%$	867				
Inclusive modes						
e ⁺ anything	(4.5 ± 1.7) %	_				
pe ⁺ anything	$(1.8 \pm 0.9)\%$	_				
p anything	(50 ±16)%	_				

5

Data samples at **BESIII**

2009:	106M ψ (3686)	2009: 10	6M ψ (3686)
	225M J/ ψ	2015: R-s	scan 2-3 GeV+2.175 GeV
2010:	0.98 fb ⁻¹ ψ (3770)	2016: 3.2	20 fb ⁻¹ @ 4.178 GeV (XYZ& D ⁺ _s)
2011:	2.93 fb ⁻¹ ψ (3770) (D ⁰⁽⁺⁾)	2017: 7×	0.50 fb ⁻¹ @4.19-4.22 GeV (XYZ& D ⁺ _s),
	0.48 fb ⁻¹ @4.01 GeV		@4.24-4.27 (XYZ)
2012:	0.45B ψ (3686) (total)	2018: Ma	ore J/ ψ +tuning new RF cavity
	1.30B J/ ψ (total)	2019: 10	B J/ ψ (total)
2013:	1.09 fb ⁻¹ @4.23 GeV (XYZ&D ⁺)	8×	$0.50 \text{ fb}^{-1} \text{XYZ} \text{ scan} @4.13, 4.16 (XYZ & D_s^+),$
	0.83 fb ⁻¹ @4.26 GeV		4.29-4.44 GeV
	0.54 fb ⁻¹ @4.36 GeV	2020: 3.8	8 fb ⁻¹ @ <mark>4.61-4.7 GeV</mark> (XYZ& <mark>//</mark> c ⁺)
	10×0.05 fb ⁻¹ XYZ scan@3.81-4.42 GeV	2021: 2.0	0 fb ⁻¹ @ 4.74-4.946 GeV
2014:	1.03 fb ⁻¹ @4.42 GeV	2.7	7B ψ (3686) (total)
	0.11 fb ⁻¹ @4.47 GeV	2022: 0.4	4 fb ⁻¹ @3.650 GeV
	0.11 fb ⁻¹ @4.53 GeV	0.4	4 fb⁻¹ @3.682 GeV
	0.05 fb ⁻¹ @4.575 GeV	2.9	$\to 8 \text{ fb}^{-1} \psi(3770) (D^{0(+)}, \text{ total})$
	0.57 fb ⁻¹ @ <mark>4.60 GeV</mark> (XYZ& <mark>∕1</mark> , ⁺)	2023-2024	4: 8→20 fb ⁻¹ ψ (3770) (for $D^{0(+)}$)
	0.80 fb ⁻¹ R scan @3.85-4.59 GeV		

Totally about 38 fb⁻¹ at E_{cm} between 2 and 4.95 GeV in 13 year running

World largest threshold charmed hadron samples at BESII

世界上最大的近阈数据

对产生→双标记方法 背景低→系统误差小 中性D介子量子关联

质心能量	采集	亮度 (fb ⁻¹)	D^0	<i>D</i> +	D_s^+	Λ_c^+
(GeV)	年份		广	<u> </u>	广初	广额
3.773	2010-2011 <mark>(+2022)</mark>	2.93 <mark>→8</mark>	2.5M (2.7×)	1.7M(2.7×)		
4.009	2011	0.5			13K	
4.18-4.23	2016,2017,2014,2019	7.3			1.5M	
4.6 (4.61-4.7)	2014(+2020)	0.6→4.5				15K (8×)

(Semi)leptonic D decays

Studies of $D^+ \rightarrow l^+ \nu_l$

2.93 fb⁻¹ data@ 3.773 GeV

 $f_{D^+}|V_{cd}| = 46.7 \pm 1.2 \pm 0.4 \text{ MeV}$

 $B[D^+ \to \tau^+ \nu] = (1.20 \pm 0.24 \pm 0.12) \times 10^{-3}$

 $f_{D^+}|V_{cd}| = 50.4 \pm 5.0 \pm 2.5 \text{ MeV}$

Studies of $D_s^+ \rightarrow \mu^+ \nu_{\mu}$

3.19 fb⁻¹@4.18 GeV

PRL122(2019)071802

 $B[D_s^+ \to \mu^+ v] = (5.49 \pm 0.16 \pm 0.15) \times 10^{-3}$ $f_{D_s^+} |V_{cs}| = (242.5 \pm 3.5 \pm 3.7) \text{ MeV}$

精度~2.1%

6.3 fb⁻¹@4.18-4.23GeV

PRD104(2021)052009

2198±55

 ${\rm B}[D_s^+ \to \mu^+ \nu] = (5.35 \pm 0.13 \pm 0.16) \times 10^{-3}$

 $\mathbf{f}_{D_s^+}|\mathbf{V}_{cs}| = (243.1 \pm 3.0 \pm 3.7) \text{ MeV}$

精度~2.0%

Studies of $D_s^+ \rightarrow \tau^+ \nu_{\tau}$

PRD104(2021)032001

PRD104(2021)052009

$D_s^+ \rightarrow \tau^+(\rho^+ v)v$ 6.3 fb⁻¹ 1745±84 Events / (0.024 GeV²/ c⁴ GeV^2/c^4 4.199 GeV 4.178 GeV-4.189 GeV 30 30 Events / (0.04 GeV²/c⁴) 4.209 GeV 4.219 GeV 4.226 GeV 12 0.0 0.50.0 0.5

 $D_s^+ \rightarrow \tau^+(\pi^+ v)v$

946±46

(GeV/c² 150

of ever

100 8

PRL127(2021)171801 $D_s^+ \rightarrow \tau^+ (e^+ v v) v$ 6.3 fb⁻¹ 4940±97

 $f_{D_c^+}|V_{cs}| = (244.8 \pm 5.8 \pm 4.8) \text{ MeV}$

精度~3.1%

 MM^2 (GeV²/ c^4)

 $f_{D_s^+}|V_{cs}| = (243.0 \pm 5.8 \pm 4.0) \text{ MeV}$ 精度~2.9%

 $f_{D_{c}^{+}}|V_{cs}| = (244.4 \pm 2.3 \pm 2.9) \text{ MeV}$ 精度~1.5%

Comparisons of f_{D^+} and $f_{D^+_s}$

FNAL/MILC	PRD98,074512	249.9±0.4
RBC/UKQCD	JHEP1712,008	246.4±1.3 ^{+1.3} ■
RBC/UKQCD	PRD92,034517	254.0±2.0±4.0 📼
ETM	PRD91,054057	247.2±4.7
FNAL/MILC	PRD90,074509	249.0±0.3 ^{+1.1}
FNAL/MILC	PRD85,114506	260.1±10.8
HPQCD	PRD82,114504	248.0±2.5
CLEO	PRD79,052002 τ _{evv} ν	252.8±11.2±5.5
CLEO	PRD80,112004 τ _{ρν} ν	258.0±13.3±5.2
CLEO	PRD79,052001 τ _{πν} ν	278.3±17.6±4.4
BaBar	PRD82,091103 , τ _{evv, μvv} ν	244.6±9.1±14.2
Belle	JHEP1309,139, τ _{evv, μvv, πv} ν	262.2±4.8±7.4
BESIII	PRD94,072004 , μν, τ _{πν} ν	241.0±16.3±6.6
CLEO	PRD79,052001 , μν	257.6±10.3±4.3
BaBar	PRD82,091103, μν	265.9±8.4±7.7
Belle	JHEP1309,139, μν	249.8±6.6±5.0
BESIII	PRL122,071802 , μν	252.9±3.7±3.6 🗕
BESIII	PRD104,052009, μν	249.8±3.0±3.9 🔶
BESIII	PRD104,052009, τ _{πν} ν	249.7±6.0±4.2 +
BESIII	PRD104,032001 , τ _{ρν} ν	251.6±5.9±4.9
BESIII	PRL127,171801, τ _{evv} ν	251.1±2.4±3.0 🕈
-50 0	50 100 1	50 200 250
	f _n (MeV	() ()
	D_{s}	/

Studies of $D \rightarrow Pe^+\nu_e$ dynamics

$$\frac{d\Gamma}{dq^2} = X \frac{G_F^2 |V_{cd(s)}|^2}{24\pi^3} p^3 |f_+(q^2)|^2 \longrightarrow f_+^{D \to P}(\mathbf{0}) |V_{cs(d)}|$$

- 形状因子参数化形式
- Single pole form $f_{\perp}(q^2) = \frac{f_{\perp}(0)}{1 \frac{q^2}{M_{\text{pole}}^2}}$
- Modified pole

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{(1 - \frac{q^{2}}{M_{pole}^{2}})(1 - \alpha \frac{q^{2}}{M_{pole}^{2}})}$$

 $- \mathbf{ISGW2} \qquad \qquad f_{+}(q^{2}) = f_{+}(q_{\max}^{2}) \left(1 + \frac{r_{\mathrm{ISGW2}}^{2}}{12}(q_{\max}^{2} - q^{2})\right)^{-2}$

- Series expansion
$$f_+(t) = \frac{1}{P(t)\Phi(t,t_0)}a_0(t_0)\left(1+\sum_{k=1}^{\infty}r_k(t_0)[z(t,t_0)]^k\right)$$

Studies of $c \rightarrow sl^+ v_l$ semileptonic decays

PRD96(2017)012002

 $D^+ \rightarrow \overline{K}{}^0 e^+ \nu_e$

PRD92(2015)112008

 $D^+ \rightarrow K_L^0 e^+ \nu_e$

PRD92(2015)072012

400

Studies of $c \rightarrow dl^+ v_l$ semileptonic decays

15

Comparisons of $f_{+}^{D \to K}(0)$ and $f_{+}^{D \to \pi}(0)$

The measurements of the Cabibbo-suppressed decays are still dominated by statistical uncertainties

Comparisons of other form factors

Comparisons of V_{cs} and V_{cd}

LFU tests in charm decays before BESIII

3.9σ

3.3σ

Tension in B physics

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)} l \nu_{l})}$$

Tension in D physics

$$B^{\text{PDG18}}[D^0 \to \pi^- \mu^+ \nu] = (0.237 \pm 0.024)\%$$
 (2.15)

 $\frac{\Gamma^{\text{PDG18}}[D^0 \to \pi^- \mu^+ v]}{\Gamma^{\text{PDG18}}[D^0 \to \pi^- e^+ v]} = 0.82 \pm 0.08 \quad \begin{array}{l} \text{SM prediction:} \\ \textbf{0.985} \end{array}$

粲强子遍举µ半轻衰变大量研究空白!

		D^0		D ⁺		D_s^+
	K^{-}	4% ^{Belle}	\overline{K}^0	7% ^{FOCUS}	η	NA
	<i>K</i> *-	13% ^{focus}	\overline{K}^{*0}	3% ^{CLEOc}	η'	NA
$c \rightarrow s t^{+} v$					${oldsymbol{\phi}}$	NA
					f ₀	NA
	π-	10% ^{Belle}	π^0	NA	K^0	NA
$c ightarrow dl^+ v$	ρ-	NA	ρ 0	17% ^{FOCUS}	<i>K</i> *0	NA
			ω	NA		
			η	NA		
			η'	NA		

19

Tests of LFU in $D^+_{(s)} \rightarrow l^+ \nu_l$

$\int_{M_{miss}}^{\infty} (\text{GeV}/c^2)^2$

PRL123(2019)211802

 $B[D^+ \to \tau^+ \nu] = (1.20 \pm 0.24 \pm 0.12) \times 10^{-3}$

$${\rm B}^{\rm PDG}[D^+ \to \mu^+ \nu] = (3.74 \pm 0.17) \times 10^{-4}$$

$$R_{D} = \frac{B[D^{+} \to \tau^{+} v]}{B[D^{+} \to \mu^{+} v]} = 3.21 \pm 0.64 \pm 0.43$$

SM prediction: 2.67

0.5

1.5

1

E^{tot}_{extra} (GeV)

0

Combined results:

100

0 0.5

$$B[D_s^+ \to \mu^+ \nu] = (5.43 \pm 0.16) \times 10^{-3}$$
$$B[D_s^+ \to \tau^+ \nu] = (5.33 \pm 0.12)\%$$
$$R_{Ds} = \frac{B[D_s^+ \to \tau^+ \nu]}{B[D_s^+ \to \mu^+ \nu]} = 9.82 \pm 0.36$$

1.5

1

2

SM prediction: 9.75

 $D_{s}^{+} \rightarrow Xe^{+}\nu_{e} BG$ $D_{s}^{+} \rightarrow K_{L}^{0}e^{+}\nu_{e} BG$ $- \cdot D^{-} \rightarrow K_{s}^{0}\pi^{-} BG$

---- Signal + all BGs

 $D_s^+ \rightarrow \tau^+ (\rightarrow e^+ \nu_e \overline{\nu}_\tau) \nu_\tau$ signal

Tests of LFU in $D \rightarrow (P, V)l^+\nu_l$

$$D^+ \rightarrow \eta \mu^+ v$$

PRL124(2020)231801


```
D^+ \rightarrow \omega \mu^+ v
```

PRD101(2020)072005

 $\mathrm{B}[D^+ \to \eta \mu^+ \nu] = (0.104 \pm 0.010 \pm 0.005)\%$

$$R_{D\eta} = \frac{\Gamma[D^+ \to \eta \mu^+ \nu]}{\Gamma[D^+ \to \eta e^+ \nu]} = 0.91 \pm 0.13$$

$$B[D^+ \to \omega \mu^+ \nu] = (0.177 \pm 0.018 \pm 0.011)\%$$

$$R_{D\omega} = \frac{\Gamma[D^+ \to \omega \mu^+ \nu]}{\Gamma[D^+ \to \omega e^+ \nu]} = 1.05 \pm 0.14$$

$$B[D^0 \to \rho^- \mu^+ \nu] = (0.135 \pm 0.009 \pm 0.009)\%$$

$$R_{D\rho} = \frac{\Gamma[D^+ \to \omega \mu^+ \nu]}{\Gamma[D^+ \to \omega e^+ \nu]} = 0.90 \pm 0.11$$

SM prediction: 0.93-0.96

Summary of LFU tests at BESIII

The $D^+ \rightarrow \tau^+ \nu$ and six semimuonic D decays are observed for the first time. Five semimuonic charm decays are measured with higher precision

		BF ratios	References
	$D^0 \to K^-$	$0.978 \pm 0.007 \pm 0.012$	PRL122(2019)011804
	$D^0 \to \pi^-$	$0.922 \pm 0.030 \pm 0.022$	PRL121(2018)171803
	$D^0 \to \rho^-$	0.90 ± 0.11	PRD104(2021)L091003
	$D^+ \to \overline{K}{}^0$	1.00 ± 0.03	EPJC76(2016)369
	$D^+ \to \pi^0$	$0.964 \pm 0.037 \pm 0.026$	PRL121(2018)171803
μ/e	$D^+ \rightarrow \omega$	1.05 ± 0.14	PRD101(2020)072005
	$D^+ \rightarrow \eta$	0.91 ± 0.13	PRL124(2020)231801
	$D_s^+ \rightarrow \eta$	0.86 ± 0.29	
	$D_s^+ \rightarrow \eta'$	1.14 ± 0.68	PRD97(2018)012006
	$D_s^+ \rightarrow \phi$	1.05 ± 0.24	
	$\Lambda_c^+\to\Lambda$	$0.96 \pm 0.16 \pm 0.04$	PLB767(2017)42
	$D^+ \to \tau^+ \nu$	$3.21 \pm 0.64 \pm 0.43$	PRL123(2019)211802
τ/μ	$D_s^+ \to \tau^+ \nu$	9.67 ± 0.36	PRL127(2021)171801

No deviation greater than 1.7 σ was found!

PRL121(2018)171803

Hadronic D decays

Strong phase differences between D^0 and \overline{D}^0

$$D \rightarrow K^0_{S/L} K^+ K^-$$

 $D \rightarrow K^- \pi^+ \pi^+ \pi^-$ and $K^- \pi^+ \pi^0$

JHEP05(2021)164

Amplitude analysis of $D_s^+ \rightarrow \eta \pi^+ \pi^0$

PRL123(2020)112001

Amplitude	ϕ_n (rad)	FF_n
$D_s^+ \to \rho^+ \eta$ $D_s^+ \to (\pi^+ \pi^0)_V \eta$ $D_s^+ \to a_0(980)\pi$	0.0 (fixed) 0.612 \pm 0.172 \pm 0.342 2.794 \pm 0.087 \pm 0.044	$\begin{array}{c} 0.783 \pm 0.050 \pm 0.021 \\ 0.054 \pm 0.021 \pm 0.025 \\ 0.232 \pm 0.023 \pm 0.033 \end{array}$

$B_{D_s^+ \to \pi^+ \pi^0 \eta} = (9.50 \pm 0.28 \pm 0.41)\%$
$B_{D_s^+ \to \pi^+ \pi^0 \eta}^{\text{PDG18}} = (9.2 \pm 1.2)\%$
$B_{D_s^+ \to \rho^+ \eta} = (7.44 \pm 0.48 \pm 0.44)\%$
$B_{D_s^+ \to a_0(980)\pi} = (2.20 \pm 0.22 \pm 0.34)\%$

Observation of abnormally large branching fraction for annihilation process, which is greater than that of the known D annihilation decay by two order of magnitude

Observation of a_0(1817) in D_s^+ \rightarrow KK\pi

PRD105(2022)L051103 $D_{\rm s}^+ \rightarrow K_{\rm s}^0 K_{\rm s}^0 \pi^+$ - Data (a) — Total fit $\dots K_{S}^{\theta}K^{*}(892)^{+}$ $S(1710)\pi^{+}$ 1.8 1.6 $M_{K_{\rm c}^{\theta}K_{\rm c}^{\theta}}\,({\rm GeV}/c^2)$ destructive interference: $a_0(980)$ and $f_0(980)$ arXiv:2204.09614 $\rightarrow K_{\rm s}^0 K^+ \pi^0_-$ Events / (20 MeV/c^2) $---- K^+\overline{K} (892)^{\theta}$ $K_{S}^{0}K^{*}(892)^{+}$ (a) $-K^{+}\overline{K}(1410)^{0}$ $---- a_0(980)^+ \pi^0$

 $a_0(1710)^+\pi^0$

 $M_{K_{s}^{\theta}K^{+}}$ (GeV/ c^{2})

1.8

1.6

50

constructive interference: $a_0(1817)$ and $f_0(1710)$

- The isovector partner of $f_0(1710)$ or X(1812)?
- Same resonance observed in η_c to $\pi\pi\eta$ by BaBar?

PRD104(2021)072002

- $M=1.817 \pm 0.008 \pm 0.020 \text{ GeV}/c^2$
- $\Gamma = 0.097 \pm 0.022 \pm 0.015 \text{ GeV}/c^2$
- $\mathcal{B}(D_s^+ \to a_0(1817)^+ \pi^0)$ $= (3.44 \pm 0.52 \pm 0.32) \times 10^{-3}$
- Significance > 10σ

 $a_0(1817)^+$ in $K_s^0 K^+$ mass spectrum

Abnormal phenomena in hadronic D decays

首次观测到双卡比玻压制衰变 $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$

首次观测到 $D^+ \rightarrow \omega \phi$

PRL128(2022)011803

PRL125(2020)241802

实验: $B_{D^+ \to K^+ \pi^+ \pi^- \pi^0} = (1.13 \pm 0.08) \times 10^{-3}$ $B_{DCS}/B_{CF} = (6.3 \pm 0.5) \tan^4 \theta_C$ 得到BESIII半轻标记 PRD104(2021)072005 和Belle实验结果arXiv: 2205.02018的确认

发现 D⁺ → VV 衰变横向极化与理论显著差异: 有助于深入探讨 D⁰-D⁰混合和CP破坏机制

理论预言:

 $B_{DCS}/B_{CF} \sim (0.5 - 2.0) \tan^4 \theta_{C}$

θ_c为卡比 玻混合角

Charmed baryon Λ_c^+ **decays**

Absolute branching fractions of Λ_c^+ decays

PRL116(2016)052001

PRL115(2015)221805

Hadronic decay $\Lambda_c^+ \to p K^- \pi^+ + 11 \text{ CF modes } \text{ PRL116(2016)052001}$ $\Lambda_c^+
ightarrow \mathrm{pK}^+\mathrm{K}^-, \,\mathrm{p\pi}^+\pi^ \Lambda_c^+
ightarrow \mathrm{n}K_s^0\pi^+$ $\Lambda_c^+
ightarrow \mathrm{p\eta}, \,\mathrm{p\pi}^0$ PRL117(2017)232002 PRL118(2017)112001 PRD95(2017)111102(R)
$$\begin{split} \Lambda_c^+ &\to \Sigma^- \pi^+ \pi^+ \pi^0 \\ \Lambda_c^+ &\to \Xi^{0(*)} K^+ \\ \Lambda_c^+ &\to \Lambda \eta \pi^+ \\ \Lambda_c^+ &\to \Sigma^+ \eta, \Sigma^+ \eta' \end{split}$$
 $\rightarrow \Sigma^{-}\pi^{+}\pi^{+}\pi^{0}$ PLB772(2017)388 PLB783(2018)200 PRD99(2019)032010 CPC43(2019)083002 $\Lambda_c^+ \rightarrow BP \text{ decay asymmetries} PRD100(2019)07200$ $\Lambda_c^+ \to pK_s\eta$ PLB817(2021)136327 Semi-leptonic decay $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ PRL115(2015)221805 $\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$ PLB767(2017)42 Inclusive decay $\Lambda_c^+ \to \Lambda X$ PRL121(2018)062003 $\Lambda_c^+ \rightarrow e^+ X$ PRL121(2018)251801 $\Lambda_c^{+} \rightarrow K_s^0 X$ EPJC80(2020)935 Production $\Lambda_c^+ \Lambda_c^-$ cross section PRL120(2018)132001

Very productive for the data taken in 35 days!

Impact on the world data of Λ_c^+

For example

n

Scale factor/

PDG2020

Ac DECAY MODES	I	Fraction (Γ _i /Γ)	Confidence level	(MeV/c)
Hadronic mode	s with a	p: S = -1 fire	al states	
p \overline{K}^0		(2.3 \pm 0.6) %	6	873
$pK^{-}\pi^{+}$	[a]	(5.0 \pm 1.3) $\%$	6	823
р К *(892) ⁰	[<i>b</i>]	(1.6 \pm 0.5) %	6	685
$\Delta(1232)^{++}K^{-}$		(8.6 ± 3.0)>	< 10 ⁻³	710
$\Lambda(1520)\pi^+$	[<i>b</i>]	(1.8 \pm 0.6) %	6	627
$pK^{-}\pi^{+}$ nonresonant		(2.8 \pm 0.8) %	6	823
$p\overline{K}^0\pi^0$		(3.3 \pm 1.0) %	6	823
$p\overline{K}^0\eta$		(1.2 \pm 0.4) %	6	568

PDG2014

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Λ_c^+ REFERENCES

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1992 edition (Physical Review **D45**, 1 June, Part II) or in earlier editions.

AAIJ	19AG	PR D100 032001	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABLIKIM	19AX	PR D100 072004	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	19X	CP C43 083002	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	19Y	PR D99 032010	M. Ablikim <i>et al.</i>	(BESIII Collab.)
AAIJ	18N	PR D97 091101	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	18R	JHEP 1803 182	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	18V	JHEP 1803 043	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABLIKIM	18AF	PRL 121 251801	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	18E	PRL 121 062003	M. Ablikim <i>et al.</i>	(BESIII Collab.🗡
ABLIKIM	18Y	PL B783 200	M. Ablikim <i>et al.</i>	(BESIII Collab.)
BERGER	18	PR D98 112006	M. Berger <i>et al.</i>	(BELLE Collab.)
ABLIKIM	17D	PL B767 42	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	17H	PRL 118 112001	M. Ablikim <i>et al.</i>	(BESIII Collab.) 🖈
ABLIKIM	17Q	PR D95 111102	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	17Y	PL B772 388	M. Ablikim <i>et al.</i>	(BESIII Collab.)
PAL	17	PR D96 051102	B. Pal <i>et al.</i>	(BELLE Collab.)
ABLIKIM	16	PRL 116 052001	M. Ablikim <i>et al.</i>	(BESIII Collab. 🔆
ABLIKIM	16U	PRL 117 232002	M. Ablikim <i>et al.</i>	(BESIII Collab.)
YANG	16	PRL 117 011801	S.B. Yang <i>et al.</i>	(BELLE Collab.)
ABLIKIM	15Y	PRL 115 221805	M. Ablikim et al.	(BESIII Collab.)
ZUPANC	14	PRL 113 042002	A. Zupanc <i>et al.</i>	(BELLE Collab.)
LEES	11G	PR D84 072006	J.P. Lees et al.	(BABAR Collab.)

	Hadronic modes with a p	or <i>n</i> :	S = -1 final states	
Γ_1	pK_{2}^{0}		$(1.59\pm 0.08)\%$	S=1.1
Γ2	$p \tilde{K} \pi^+$		(6.28± 0.32) %	S=1.4
13	p n *(u>2) ⁰	[a]	(1.96± 0.27)%	
Γ ₄	Δ (1232) $^{++}$ K $^-$		(1.08 ± 0.25) %	
Γ ₅	$\Lambda(1520)\pi^+$	[<i>a</i>]	(2.2 \pm 0.5) %	
Гь	$pK^-\pi^+$ nonresonant		(3.5 \pm 0.4) %	
Γ ₇	$pK_S^0\pi^0$		(1.97 ± 0.13) %	S=1.1
Г ₈	$nK_S^0\pi^+$		(1.82± 0.25) %	
Γ,	$p \overline{K}^0 \eta$		(1.6 \pm 0.4) %	
Γ_{10}	$p K^0_S \pi^+ \pi^-$		$(1.60\pm 0.12)\%$	S=1.1
$ _{11}$	$p K^- \pi^+ \pi^0$		(4.46± 0.30) %	S=1.5
Γ_{12}	$p K^*(892)^- \pi^+$	[<i>a</i>]	(1.4 \pm 0.5) %	
Γ_{13}	$p(K^-\pi^+)_{nonresonant}\pi^0$		(4.6 \pm 0.8) %	
י 14	$\Delta(1232)\overline{n^*}(032)$		Seen	
Γ_{15}	$pK^{-}2\pi^{+}\pi^{-}$		(1.4 \pm 0.9) $ imes$ 10 $^{-3}$	
Γ_{16}	$pK^{-}\pi^{+}2\pi^{0}$		(1.0 \pm 0.5) %	

With 0.567 fb⁻¹ data at 4.6 GeV, BESIII significantly contributed to the Λ_c^+ decay field, with much improved precision and new decay modes

Observation of $\Lambda_c^+ \rightarrow n\pi^+$

结果有助于检验、完善基于夸克SU(3) 对称性的理论计算

Decay	Yields	Branching fraction	
$\Lambda_c^+ \to n\pi^+$	50 ± 9	$(6.6 \pm 1.2_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-4}$	
$\Lambda_c^+\to\Lambda\pi^+$	376 ± 22	$(1.31 \pm 0.08_{\text{stat}} \pm 0.05_{\text{syst}}) \times 10^{-2}$	
$\Lambda_c^+\to\Sigma^0\pi^+$	343 ± 22	$(1.22 \pm 0.08_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-2}$	

$R=B[\Lambda_c^+ \rightarrow n\pi^+]/B[\Lambda_c^+ \rightarrow p\pi^0] > 7.2@90\% \text{ C.L.}$

$\mathcal{B}(\Lambda_c^+ \to n\pi^+) \times 10^{-4}$	R	Reference
4	2	PRD 55, 7067 (1997)
9	2	PRD 93, 056008 (2016)
11.3 ± 2.9	2	PRD 97, 073006 (2018)
8 or 9	4.5 or 8.0	PRD 49, 3417 (1994)
2.66	3.5	PRD 97, 074028 (2018)
6.1 ± 2.0	4.7	PLB 790, 225 (2019)
7.7 ± 2.0	9.6	JHEP 02 (2020) 165

Study of $\Lambda_c^+ \to \Lambda e^+ \nu_e$

本周最新结果, arXiv:2207.14149, submitted to PRL

$$\begin{split} \frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{e}d\cos\theta_{p}d\chi} &= \frac{G_{F}^{2}|V_{cs}|^{2}}{2(2\pi)^{4}} \cdot \frac{Pq^{2}}{24M_{\Lambda_{c}}^{2}} \times \\ \begin{cases} \frac{3}{8}(1-\cos\theta_{e})^{2}|H_{\frac{1}{2}1}|^{2}(1+\alpha_{\Lambda}\cos\theta_{p}) \\ &+ \frac{3}{8}(1+\cos\theta_{e})^{2}|H_{-\frac{1}{2}-1}|^{2}(1-\alpha_{\Lambda}\cos\theta_{p}) \\ &+ \frac{3}{4}\sin^{2}\theta_{e}[|H_{\frac{1}{2}0}|^{2}(1+\alpha_{\Lambda}\cos\theta_{p}) + |H_{-\frac{1}{2}0}|^{2}(1-\alpha_{\Lambda}\cos\theta_{p})] \\ &+ \frac{3}{2\sqrt{2}}\alpha_{\Lambda}\cos\chi\sin\theta_{e}\sin\theta_{p} \times \\ &\left[(1-\cos\theta_{e})H_{-\frac{1}{2}0}H_{\frac{1}{2}1} + (1+\cos\theta_{e})H_{\frac{1}{2}0}H_{-\frac{1}{2}-1}]\right] \end{cases}$$

0.4

0

0

0.5

 $q^2 (\text{GeV}^2/c^4)$

0.5

 $q^2 \,({\rm GeV}^2/c^4)$

32

First observation of $\Lambda_c^+ \rightarrow pK^-e^+\nu_e$

Larger data set helps to determine form factors in $\Lambda_c^+ \rightarrow \Lambda(1520)e^+\nu_e$, which is important to explore the internal structure of $\Lambda(1520)$

Measurement of BFs of $\Lambda_c^+ \rightarrow \Sigma^0 K^+$ and $\Lambda_c^+ \rightarrow \Sigma^+ K_s^0$

本周最新结果, arXiv:2207.10906, submitted to PRD

B[$\Lambda_c^+ \to \Sigma^0 K^+$]/B[$\Lambda_c^+ \to \Sigma^0 \pi^+$] = (3.61 ± 0.73 ± 0.05)% B[$\Lambda_c^+ \to \Sigma^+ K_s^0$]/B[$\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-$] = (1.06 ± 0.31 ± 0.04)% K合参考道PDG分支比:

 $B[\Lambda_c^+ \to \Sigma^0 K^+] = (4.7 \pm 0.9 \pm 0.1 \pm 0.3) \times 10^{-4}$

 $B[\Lambda_c^+ \to \Sigma^+ K_s^0] = (4.8 \pm 1.4 \pm 0.02 \pm 0.03) \times 10^{-4}$

	$\mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_{\rm S}^0)$
QCD corrections [2]	2(8)	2(4)
MIT bag model $[3]$	7.2 ± 1.8	7.2 ± 1.8
Diagrammatic analysis [4]	5.5 ± 1.6	9.6 ± 2.4
$SU(3)_F$ flavor symmetry [5]	5.4 ± 0.7	5.4 ± 0.7
IRA method [6]	5.0 ± 0.6	1.0 ± 0.4
PDG 2020 [28]	5.2 ± 0.8	/

 $B[\Lambda_c^+ \to \Sigma^0 K^+] / B[\Lambda_c^+ \to \Sigma^+ K_s^0] = 0.98 \pm 0.36$

Summary

■ 近年来: BESIII基于已有数据, 在粲强子含轻和强子等各类衰变研究中取得了重要进展 (发表文章100余篇, 其中24篇PRL)

■ 2022年以来: 基于4.5 fb⁻¹的A⁺_c样本@4.6-4.7 GeV,已推出首批成果

■ 2022年:新增~5fb⁻¹的D⁰⁽⁺⁾样本@3.773 GeV; 2023-2024年: → 20 fb⁻¹ @3.773 GeV

■ 未来3-5年,期待更丰富的粲强子物理成果: $f_{+}^{D \to K}(0) \to 0.4\%, f_{+}^{D \to \pi}(0) \to 0.5\%; f_{D^{+}} \to 1.0\%, f_{D_{s}^{+}} \to 0.8\%$ $|V_{cs}| \to 0.5\%, |V_{cd}| \to 1.0\%$

Thank you!

Back slides

Beijing Electron Positron Collider (BEPCII)

BESIII detector

NIMA614(2010)345

Excellent resolution, particle identification, and large coverage for neutral and charged particles

BESIII collaboration

OCEAN

Europe (17/115)

Germany (6): Bochum University,

AFRICA

GSI Darmstadt, Helmholtz Institute Mainz, Johannes Gutenberg University of Mainz, Universitaet Giessen, University of Münster Italy (3): Ferrara University, INFN, University of Torino Netherlands (1):KVI/University of Groningen Russia (2): Budker Institute of Nuclear/Physics, Dubna JINR Sweden (1):Uppsala University Turkey (1):Turkish Accelerator Center Particle Factoryl Group UK (2): University of Manchester, University of Oxford Poland (1)National Centre for Nuclear Research

Asia (6/10)

Pakistan (2): COMSATS Institute of Information

Z Technology

University of the Punjab, University of Lahore Mongolia (1): Institute of Physics and Technology Korea (1): Chung-Ang University India (1): Indian Institute of Technology madrasE A M Thailand (1): Suranaree University of Technology

~500 members from 76 institutes in 16 countries USA(4/8) Carnegie Mellon University Indiana University University of Hawaii University of Minnesota

NSouth America (1/1)

Chile: University of Tarapaca

China (48/367)

Institute of High Energy Physics (146), other units(221): Beijing Institute of Petrochemical Technology, Beihang University, China Center of Advanced Science and Technology, Fudan University, Guangxi Normal University, Guangxi University, Hangzhou Normal University, Henan Normal University, N Henan University of Science and Technology, Huazhong Normal University, Huangshan College, Hunan University, SOUTH AMERICA Hunan Normal University, Henan University of Technology Institute of modern physics, Jilin University, Lanzhou University, Liaoning Normal University, Liaoning University, Nanjing Normal University, Nanjing University, Nankai University, North China Electric Power University, Peking University, Qufu normal university, Shanxi University, Shanxi Normal University, Sichuan University, Shandong Normal University, Shandong University, Shanghai Jiaotong University, Soochow University, South China Normal University, Southeast University, Sun Yat-sen University, Tsinghua University, University of Chinese Academy of Sciences, University of Jinan, University of Science and Technology of China, University of Science and Technology Liaoning, University of South China, Wuhan University, Xinyang Normal University,

Zhejiang University, Zhengzhou University, YunNan University, China University of Geosciences

40

Physics at BESIII

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with au lepton

- XYZ particles
- D mesons
- f_D and f_{Ds}
- $D_0 D_0$ mixing
- Charm baryons

World largest J/ ψ , ψ (3686), ψ (3770),... data samples More than 370 papers and 71 in Phys. Rev. Lett.

Unique hadrons at BESIII

Charmed hadrons:

- Produced in pair
- Quantum correlated $D^0\overline{D}^0$

2.93 fb⁻¹@3.773 GeV: $D\overline{D}$ 0.48 fb⁻¹@4.009 GeV: $D_s\overline{D}_s$ 6.32 fb⁻¹@4.18-4.23 GeV: $D_s\overline{D}_s^*$ 4.4 fb⁻¹@4.6-4.7 GeV: $\Lambda_c\overline{\Lambda}_c$

Hadron-physics challenges:

- Understanding of established states: precision spectroscopy
- Nature of exotic states: search and spectroscopy of unexpected states

At BESIII, two golden ways to study hadron spectroscopy:

- Light hadrons: charmonium decays (10B J/ ψ and 2.7 B ψ (2S))
- Heavy hadrons (XYZ): direct production, radiative and hadronic transitions (23 fb⁻¹ data above 3.8 GeV)

$D \rightarrow Ve^+ v_e$ 形状因子测量

FF ratio $r_2 = A_2(0)/A_1(0)$

Decay rate depend on 5 variables and 3 form factors

$$d^{5}\Gamma = \frac{G_{F}^{2}|V_{cs}|^{2}}{(4\pi)^{6}m_{D}^{2}}X\beta\mathcal{I}(m^{2},q^{2},\theta_{K},\theta_{e},\chi)dm^{2}dq^{2}d\cos(\theta_{K})d\cos(\theta_{e})d\chi$$

•
$$X = p_{K\pi}m_D$$
, $p_{K\pi}$ is the momentum of the $K\pi$ system in the D rest frame

•
$$\beta = 2p^*/m$$
, p^* is the breakup momentum of the $K\pi$ system in its rest frame

• \mathcal{I} can be expressed in terms of helicity amplitudes $H_{0,\pm}$: $H_0(q^2) = \frac{1}{2m_q} \left[(m_D^2 - m^2 - q^2)(m_D + m)A_1(q^2) - 4 \frac{m_D^2 P_{K\pi}^2}{m_D + m} A_2(q^2) \right]$ $H_{\pm}(q^2) = (m_D + m)A_1(q^2) \mp \frac{2m_D P_{K\pi}}{m_D + m} V(q^2)$

• Vector form factor: $V(q^2) = \frac{V(0)}{1 - q^2/m_V^2}$; or: FF ratio $r_V = V(0)/A_1(0)$

• Axial-vector form factor:
$$A_1(q^2) = \frac{A_1(0)}{1-q^2/m_A^2}$$
, $A_2(q^2) = \frac{A_2(0)}{1-q^2/m_A^2}$; or:

首次观测到 $D \rightarrow (S, A)e^+\nu_e$ 型半轻衰变

Combined analysis of $D \rightarrow \overline{K}_1 e^+ v$ and $B \rightarrow g K_1$ helps better access photon polarization in $b \rightarrow s g$ ⁴⁴

Other semileptonic *D* **decays**

$$D_{s}^{+} \rightarrow \pi^{0}e^{+}\nu_{e}$$

$$D_{s}^{+} \rightarrow f_{0}e^{+}\nu_{e}$$

$$D_{0}^{0(+)} \rightarrow \overline{K}e^{+}\nu_{e}$$

$$D_{s}^{+} \rightarrow \nu_{e}eX$$

$$D_{s}^{+} \rightarrow a_{0}(980)^{0}e^{+}\nu$$

$$D^{0} \rightarrow b_{1}(1235)^{-}e^{+}\nu$$

$$D_{s}^{+} \rightarrow p\overline{p}e^{+}\nu_{e}$$

$$D_{s}^{+} \rightarrow \gamma e^{+}\nu_{e}$$

$$D_{s}^{+} \rightarrow \gamma e^{+}\nu_{e}$$

$$D^{+} \rightarrow \gamma e^{+}\nu_{e}$$

$$D^{+} \rightarrow \gamma e^{+}\nu_{e}$$

$$D^{+} \rightarrow \overline{K}^{0}e^{+}\nu_{e} \operatorname{via} \overline{K}^{0} \rightarrow \pi^{0}\pi^{0}$$

$$D_{s}^{+} \rightarrow l^{+}\nu_{l} @ 4.009 \operatorname{GeV}$$

$$D_{s}^{+} \rightarrow \eta^{(\prime)}e^{+}\nu_{e} @ 4.009 \operatorname{GeV}$$

arXiv:2206.13870 PRD105(2022)L031101 PRD104(2021)052008 PRD104(2021)012003 PRD104(2021)092004 PRD101(2020)112005 PRD100(2019)112008 PRD99(2019)072002 PRD97(2018)012006 PRD95(2017)071102 PRD96(2016)092002 CPC40(2016)113001 PRD94(2016)072004 PRD94(2016)112003

Amplitude analysis of $D_s^+ \rightarrow K_s K^+ \pi^0$

arXiv:2204.09614, submitted to PRL

Amplitude	Phase (rad)	FF (%)	BF (10^{-3})	σ
$D_s^+ \to \bar{K}^* (892)^0 K^+$	0.0(fixed)	$32.7 \pm 2.2 \pm 1.9$	$4.77 \pm 0.38 \pm 0.32$	> 10
$D_s^+ \to K^*(892)^+ K_S^0$	$-0.16 \pm 0.12 \pm 0.11$	$13.9\pm1.7\pm1.3$	$2.03 \pm 0.26 \pm 0.20$	> 10
$D_s^+ \to a_0(980)^+ \pi^0$	$-0.97 \pm 0.27 \pm 0.25$	$7.7\pm1.7\pm1.8$	$1.12 \pm 0.25 \pm 0.27$	6.7
$D_s^+ \to \bar{K}^* (1410)^0 K^+$	$0.17 \pm 0.15 \pm 0.08$	$6.0\pm1.4\pm1.3$	$0.88 \pm 0.21 \pm 0.19$	7.6
$D_s^+ \to a_0(1710)^+ \pi^0$	$-2.55 \pm 0.21 \pm 0.07$	$23.6 \pm 3.4 \pm 2.0$	$3.44 \pm 0.52 \pm 0.32$	> 10

$$\frac{B[D_s^+ \to \overline{K}^{*0}K^+]}{B[D_s^+ \to \overline{K}^0K^{*+}]} = 2.35^{+0.42}_{-0.23} \pm 0.10$$

Observation of $a_0(1812)^+$, which is the isovector partner of the $f_0(1710)$ and $f_0(1770)$

 $M = (1.817 \pm 0.008 \pm 0.020) \text{GeV}/\text{c}^2$ $\Gamma = (97 \pm 22 \pm 15) \text{MeV}$

 $\frac{B[a_0^+(980)\to \overline{K}^0K^+]}{B[a_0^+(980)\to \eta\pi^+]} = (13.7\pm3.6\pm4.2)\%$

Amplitude analyses of other hadronic *D* **decays**

$$D_{s}^{+} \rightarrow K^{+}\pi^{+}\pi^{-}\pi^{0}$$

$$D_{s}^{+} \rightarrow K^{+}\pi^{+}\pi^{-}$$

$$D_{s}^{+} \rightarrow K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-}$$

$$D_{s}^{+} \rightarrow \eta\pi^{+}\pi^{+}\pi^{-}$$

$$D_{s}^{+} \rightarrow K_{S}^{0}K_{S}^{0}\pi^{+}$$

$$D_{s}^{+} \rightarrow \pi^{+}\pi^{0}\pi^{0}$$

$$D_{s}^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}$$

$$D_{s}^{+} \rightarrow \eta\pi^{+}\pi^{+}\pi^{-}$$

$$D_{s}^{+} \rightarrow K_{S}^{0}K^{+}\pi^{0}$$

$$D_{s}^{+} \rightarrow K_{S}^{0}\pi^{+}\pi^{0}$$

$$D_{s}^{+} \rightarrow K_{S}^{0}K^{-}\pi^{+}\pi^{+}$$

$$D_{s}^{+} \rightarrow K_{S}^{0}K^{-}\pi^{+}\pi^{+}$$

$$D_{s}^{0} \rightarrow K_{S}^{0}K^{+}K^{-}$$

$$D^{+} \rightarrow K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}$$

$$D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}$$

$$D^{0} \rightarrow K^{-}\pi^{+}\pi^{0}\pi^{0}$$

$$D^{0} \rightarrow K^{-}\pi^{+}\pi^{0}\pi^{0}$$

$$D^{0} \rightarrow K^{-}\pi^{+}\pi^{0}\pi^{0}$$

$$D^{0} \rightarrow K^{-}\pi^{+}\pi^{0}\pi^{0}$$

arXiv:2205.13759 arXiv:2205.08844, accepted by JHEP JHEP07(2022)051 JHEP04(2022)058 PRD105(2022)L051103 JHEP01(2022)052 arXiv:2108.10050, under PRD review PRD104(2021)L071101 PRD104(2021)012006 JHEP06(2021)181 PRD104(2021)032011 PRD103(2021)092006 PRD104(2021)012016 arXiv:2006.02800 PRD100(2019)072008 PRD99(2019)092008 PRD95(2017)072010 PRD89(2014)052001

Strong phase parameters of neutral *D* **decays**

PLB734(2014)227

PLB744(2015)339

 $A^{K\pi}_{CP} = (12.7 \pm 1.3 \pm 0.7)\%$

 $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$

The most precise result to date

Branching fractions of $D \rightarrow PP$

PRD97(2018)072004

JHEP08(2020)146

Absolute branching fractions of hadronic *D* decays

PRL124(2020)241803

10	D ⁰ →K ⁺ K [*] η	
5		
0	$D^0 \rightarrow K_s^0 \pi^+ \pi^- \eta$	
60		
40	A	
20		
0	a summer and the second s	
U	$D^+ \rightarrow K_S^0 \pi^+ \eta$	
400	-	
200	A	
0	$D^+ \rightarrow K^0 \pi^+ \pi^0 \pi$	
20	$D \rightarrow \mathbf{K}_{S}^{n} n \eta$	
20	÷ _ ۱	
10	╘ ╺╺╺╺╴┿╴╨╽╴┉╫╫╫┿╋	
0	1.84 1.86 1.88	

首次直接测量三十多个 衰变的绝对分支比

Decay	$\Delta E_{\rm sig}~({\rm MeV})$	$N_{\rm DT}$	$\epsilon_{\rm sig}~(\%)$	$\mathcal{B}_{sig}~(\times 10^{-4})$
$D^0 \to K^- \pi^+ \eta$	(-37, 36)	6116.2 ± 81.8	14.22	185.3(25)(31)
$D^0 \rightarrow K_S^0 \pi^0 \eta$	(-57, 45)	1092.7 ± 35.2	4.66	100.6(34)(30)
$D^0 \rightarrow K^+ K^- \eta$	(-27, 27)	13.1 ± 4.0	9.53	0.59(18)(05)
$D^0 \rightarrow K^0_{\rm S} K^0_{\rm S} \eta$	(-29, 28)	7.3 ± 3.2	2.36	1.33(59)(18)
$D^0 \to K^- \pi^+ \pi^0 \eta$	(-44, 36)	576.5 ± 28.8	5.53	44.9(22)(15)
$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^- \eta$	(-33, 32)	248.2 ± 18.0	3.80	28.0(19)(10)
$D^0 \rightarrow K^0_{s} \pi^0 \pi^0 \eta$	(-56, 41)	64.7 ± 9.2	1.58	17.6(23)(13)
$D^0 \rightarrow \pi^+ \pi^- \pi^0 \eta$	(-57, 45)	508.6 ± 26.0	6.76	32.3(17)(14)
$D^+ \rightarrow K^0_S \pi^+ \eta$	(-36, 36)	1328.2 ± 37.8	6.51	130.9(37)(31)
$D^+ \rightarrow K^{0}_{S}K^+\eta$	(-27, 27)	13.6 ± 3.9	4.72	1.85(52)(08)
$D^+ \rightarrow K^- \pi^+ \pi^+ \eta$	(-33, 33)	188.0 ± 15.3	8.94	13.5(11)(04)
$D^+ \rightarrow K^0_S \pi^+ \pi^0 \eta$	(-49, 41)	48.7 ± 9.7	2.57	12.2(24)(06)
$D^+ \rightarrow \pi^+ \pi^+ \pi^- \eta$	(-40, 38)	514.6 ± 25.7	9.67	34.1(17)(10)
$D^+ \to \pi^+ \pi^0 \pi^0 \eta$	(-70, 49)	192.5 ± 17.1	3.86	32.0(28)(17)

0.15 $D^0 \rightarrow \pi^+\pi^- 2\eta$ $D^0 \rightarrow \pi^+ \pi^- \pi^0$ $D^0 \rightarrow \pi^+\pi^-2\pi^0$ 30 0.10 20 0.05 10 $D^0 \rightarrow 4\pi^0$ D⁰→3π⁰η $D^0 \rightarrow 2\pi^+ 2\pi^- \pi^0$ 0.3 0.: 0.2 0.3 0. 0.20 $D^0 \rightarrow 2\pi^+ 2\pi^- \eta$ 0.8 $D^0 \rightarrow \pi^+\pi^-3\pi^0$ 1.0 $D^0 \rightarrow 2\pi^+ 2\pi^- 2\pi^0$ 0.1 $\begin{array}{c} Events / \left(0.5 \ MeV/c^{2}\right) \left(\times 10^{2} \right) \\ F = 1000 \\ F =$ 0.6 0.4 0.5 0.2 $D^+ \rightarrow 2\pi^+\pi$ $D^+ \rightarrow \pi^+ 2\pi^0$ $D^+ \rightarrow 2\pi^+\pi^-\pi^0$ 10 $D^+ \rightarrow 2\pi^+\pi^- 2\pi^0$ $D^+ \rightarrow \pi^+ 3\pi$ $D^+ \rightarrow 3\pi^+ 2\pi$ 0 $D^+ \rightarrow 2\pi^+\pi^-\pi^0\eta$ $D^+ \rightarrow \pi^+ 4 \pi^0$ $D^+ \rightarrow \pi^+ 3\pi^0 \eta$ 0. 0.6 0.2 0.2 0.4 0. 0 <u>սեկս^կկկվեն։ 1.86</u> Tttuttut 0 $D^+ \rightarrow 3\pi^+ 2\pi^- \pi^0$ 0.8 0.6 \mathbf{M}_{BC}^{sig} (GeV/ c^2) 0.6 0.4 0.4 0.2 ╙[╋]╫[╋]╫[╋]╋╫╋<mark>╱</mark>┊ 1.86 1.86 $\mathbf{M}_{\mathrm{BC}}^{\mathrm{sig}}$ (GeV/ c^2) M_{BC}^{sig} (GeV/c²)

Decay	$\Delta E_{\rm sig}$	$N_{\rm DT}$	ϵ_{sig}	$\mathcal{B}_{\mathrm{sig}}$
	(MeV)		(%)	$(\times 10^{-4})$
$\pi^+\pi^-\pi^0$	(-62, 36)	12792.6(120.1)	40.91	134.3(13)(16)
$\pi^{+}\pi^{-}2\pi^{0}$	(-75, 37)	3783.7(70.5)	16.29	99.8(19)(24)
$\pi^+\pi^-2\eta$	(-37, 29)	42.5(6.7)	2.14	8.5(13)(04)
$4\pi^{0}$	(-105, 41)	96.0(11.5)	5.41	7.6(09)(07)
$3\pi^{0}\eta$	(-82, 40)	155.3(14.7)	2.83	23.6(22)(17)
$2\pi^{+}2\pi^{-}\pi^{0}$	(-52, 33)	942.4(40.0)	11.70	34.6(15)(15)
$2\pi^+2\pi^-\eta$	(-36, 28)	48.5(7.8)	3.46	6.0(10)(06)
$\pi^{+}\pi^{-}3\pi^{0}$	(-76, 39)	182.7(20.9)	5.13	15.3(17)(13)
$2\pi^{+}2\pi^{-}2\pi^{0}$	(-64, 36)	350.0(22.9)	3.15	47.7(31)(21)
$2\pi^{+}\pi^{-}$	(-30, 28)	2614.3(58.0)	50.63	33.1(07)(05)
$\pi^+ 2\pi^0$	(-96, 44)	1968.0(51.7)	27.33	46.2(12)(09)
$2\pi^{+}\pi^{-}\pi^{0}$	(-59, 35)	4649.5(83.5)	25.42	117.4(21)(21)
$\pi^{+}3\pi^{0}$	(-86, 39)	573.7(30.2)	8.83	41.7(22)(13)
$3\pi^{+}2\pi^{-}$	(-37, 33)	462.1(28.7)	16.26	18.2(11)(10)
$2\pi^{+}\pi^{-}2\pi^{0}$	(-74, 39)	1207.1(45.4)	7.21	107.4(40)(30)
$2\pi^+\pi^-\pi^0\eta$	(-51, 33)	191.4(15.9)	3.17	38.8(32)(12)
$\pi^+ 4\pi^0$	(-90, 41)	56.7(10.4)	1.87	19.5(36)(23)
$\pi^+ 3\pi^0 \eta$	(-66, 37)	79.7(10.9)	1.77	28.9(40)(22)5(
$3\pi^{+}2\pi^{-}\pi^{0}$	(-49, 34)	182.8(17.3)	5.02	23.4(22)(15)
$2\pi^+\pi^-3\pi^0$	(-66, 37)	185.9(17.0)	3.49	34.2(31)(16)

arXiv:2206.13864

Absolute BFs of other hadronic *D* **decays**

```
BFs of D^{0(+)} \rightarrow K3pi and K4pi
DCS decays D^0 \rightarrow K^- \pi^+ \pi^0 and K^- \pi^+ \pi^0 \pi^0
\bullet D^{0(+)} \to K_L(\omega, \phi, \eta, \eta')
\mathbf{D}^{\mathbf{0}(+)} \to K\pi\omega
DCS decays D^+ \rightarrow K^+ \pi^0 \pi^0 and K^+ \pi^0 \eta
DCS decay D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 via SL method
\mathbf{D}^{\mathbf{0}(+)} \to KK\pi\pi
\mathbf{D}^{\mathbf{0}(+)} \to \omega \pi \pi
\bullet D^+ \to \eta \eta \pi^+
\square D^{0(+)} \rightarrow \phi X
Two-body D^{0(+)} \rightarrow \phi P decays
D_s^+ \rightarrow \omega K^+ \text{ and } \omega \pi^+
\bullet D_s^+ \to K_{S/L}^0 K^+
D_{\underline{s}}^+ \rightarrow p\overline{n}
\bullet D^+ \to K^0_{S/L} K^+(\pi^0)
\bullet D^{0(+)} \to \overline{K}\pi\eta'
D^0 \rightarrow \omega \eta
D^{0} \rightarrow 3\pi^{0}, 2\pi^{0}\eta, 2\eta\pi^{0}
\bullet D^{0(+)} \to K^0_{\rm S} X
D_s^+ \rightarrow \eta' X \text{ and } \eta' \rho^+ @4.009 \text{ GeV}
```

arXiv:2205.14031, accepted by PRD PRD105(2022)112001 PRD105(2022)092010 PRD105(2022)032009 arXiv:2110.10999, submitted to JHEP PRD104(2021)072005 PRD102(2020)052006 PRD102(2020)052003 PRD101(2020)052009 PRD100(2019)072006 PLB798(2019)135017 PRD99(2019)091101 PRD99(2019)032002 PRD99(2019)031101 PRD99(2019)112005 PRD98(2018)092009 PRD97(2018)052005 PLB781(2018)781 PLB765(2017)231 PLB750(2016)466

Rare D decays

$$D^{0} \rightarrow \pi^{0} \nu \nu$$

$$D^{0} \rightarrow pe$$

$$D^{+} \rightarrow \Lambda e^{+}, \Sigma e^{+}$$

$$D^{0} \rightarrow hhe^{+}e^{+}$$

$$D^{+} \rightarrow h^{+}h^{0}e^{+}e^{-}$$

$$D^{0} \rightarrow \gamma \gamma$$

PRD105(2022)L071102 PRD105(2022)032006 PRD101(2020)031102 PRD99(2019)112002 PRD97(2018)072015 PRD91(2015)112015