

Two candidates for beryllium tubes in Transverse Polarimeter design

CEPC Energy Calibration Group

06/05/2022

The 2022 Workshop on CEPC Central Beampipe and Beryllium Application, Beijing

Outline

- Motivation
- Method
- Compton scattering physics
- Compton polarimeter simulation
- Layout discussion
- Conclusion

Motivation

> Transverse polarization

- Calibrate beam energy by the resonant depolarization (RD) method using transverse polarized beams.
 Soviet Physic
- Observation of **CP violation**
- **Explore new physics**: distinguishing between different models of the extra dimensions in indirect searches for massive gravitons

Soviet Physics Uspekhi **14** (1972) 695. Phys. Rev. **D 70** (2004) 036005.

Physical Reports **D 460** (2008) 131.

Requirements:

.

- Transverse polarization is built in storage rings by **Sokolov-Ternov effect**.
- For RD to calibrate beam energy, a beam with transverse polarization of 5%~10% is required.
- Monitor the beam polarization continuously throughout physics runs in a short time of a few minutes is necessary.

Soviet Physics Doklady 8 (1964) 1203.

Method

- Compton polarimeter:
 - $\quad e+\gamma \rightarrow e+\gamma$
 - non-invasive
 - Scattered electrons and scattered photons can be independent to measure the beam polarization
- Møller polarimeter:
 - $e + e \rightarrow e + e$
 - Low beam current
 - Suitable for energy 100 MeV ~ 50 GeV.
- Mott polarimeter
 - Operate in beam energy below 10 MeV
- Touschek lifetime measurement:
 - Require a system that Touschek lifetime is dominated.
 - require for a highly stable and repeatable machine operation of polarized and unpolarized beams
- "spin-light" polarimeter:
 - transverse polarization: measuring the total synchrotron radiation (SR) power radiated
 - the spatial asymmetry of SR is longitudinal-spin dependent
 - Best suited for the 4 20 GeV energy range, for current less than mA

Compton scattering physics

Parameter	value
Beam energy, E	45.5 GeV
Laser wavelength, λ	1064 nm
Laser power, P_L	0.1 GW
Maximum energy of scattered photons, w_{max}	20.34 GeV
Minimum energy of scattered electrons, ε_{min}	25.16 GeV
Maximum electron scattering angle, $\theta_{e_{max}}$	4.54 μrad

Transverse polarimeter

- A dipole is arranged to separate the scattered particles from the electron beam.
- CEPC Transverse polarimeter: detecting the spatial distribution of the scattered electrons to measure the transverse polarization of electron/positron beam.

Monte-Carlo simulation

 Fit the spatial distribution of the scattered electrons by analyzing power (Π)

$$A(Y_e) = \overline{Y_e}|_{X_e} = P_{\perp}\Pi(X_e)$$

- Statistical error (10% transverse polarization):
 - $\Delta P_{\perp}/P_{\perp} \approx 1.5\%$ for about 30 seconds of data taking
- Potential systematic errors of the transverse polarization measurement for 10% polarization

Sources of systematic uncertainties	$\Delta P_{\perp}/P_{\perp}$ %
Dipole strength	0.062%
ΔL_1 (IP-to-detector)	0.007%
ΔL_2 (magnet-to-detector)	0.051%
Beam energy	0.0001%
Detector resolution	0.278%
Detector placement	ignored
Laser polarization	0.2 %
Total	< 1%

Layout discussion

Requirement for free distance

- <u>Free drift section</u> require: no magnet in beampipe.
- Aim: detecting the *asymmetry* spatial distribution of scattered electrons.
- <u>Considering the resolution</u>: free distance 40 meters is enough.
- <u>The feasibility of detecting:</u> recoding scattered electrons outside the beampipe (inner diameter 28mm + thickness 3mm)
 - A drift distance of one hundred meters is necessary

Option 1 for beryllium tube

• 真空盒设计成带有前室的真空盒(antechamber)

- Free distance about is 95.6m
- Beryllium size: $X_e \times Y_e \approx 62mm \times 1mm$

Option 1 for beryllium tube

Courtesy of Pengcheng Wang

前室真空盒的设计

Option 2 for beryllium tube

• 对于探测器安装方案:

• 在束流管壁外分几个位置贴探测器

Summary

- Accomplished:
 - Compton polarimeter is an optional method to measure beam transverse polarization.
 - non-invasive and can accurately and rapid monitor the transverse polarization.

- Next:
 - Two options for **beampipe** and **beryllium tube**
 - Considering the CEPC lattice
 - More detailed systematic uncertainties need to be estimated
 - Detector simulation
 - Radiation & Shield of the particles
 - •

讨论散射电子/散射光子的吸收装置:

- 散射光子能量区间: 0~20GeV
- 同步辐射:
- 散射电子(被探测器接受): 25.11GeV~36.8GeV
- 散射电子(未被探测器接受的): 36.8GeV~45.5GeV

Synchrotron radiation of CEPC Z mode

$$P[W/m] = 14.08 \frac{45.5^4 \times 461}{(44.95m/0.97mrad)^2} = 12.95[W/m]$$

$$E_c[keV] = 0.665BE^2 = 2.218 \frac{45.5^3}{44.95m/0.97mrad} = 4.5[keV]$$

$$\lambda_c[m] = 18.847 \frac{1}{BE^2} = 18.847 \frac{1}{0.00327 * 45.5^2} = 2.78 \times 10^{-10} [m]$$

大于特征波长和小于特征波长的光子总辐射能量相等

