Zhijun Liang (IHEP)

Institute of High Energy Physics Chinese Academy of Sciences

Physics goal for vertex detector

- Higgs precision measurement
- $H \rightarrow bb$ precise vertex reconstruction
- $H \rightarrow \mu \mu$ (precise momentum measurement)

Need tracking detector with high spatial resolution, low material

Vertex detector and beam pipe

- The radius of vertex detector should be as small, closer to interaction point
- As close to beam pipe as possible
- 顶点探测器要尽可能贴近束流管

Requirement on vertex detector

- Small inner radius (小半径, 贴近束流管)
- Low material budget (低物质量)
 - <0.15 X0 per layer
- High resolution pixel sensor 高位置分辨
 - <3µm
- Other requirement
 - Temperature (温度) <= 20 C
 - Temperature gradient两端温度梯度 < 10 C
 - Vibration 振动< 1µm

C-tagging performance

CDF silicon detector

1.9 meter

7-8 Silicon Layers

Readout channels **48,000 730,000**

Beampipe (the size of a quarter.... 1 Yuan) ~2.5 cm

ATLAS IBL pixel detector

- ATLAS Insertable B-Layer (IBL) pixel detector
- IBL顶点探测器与束流管集成在同一结构上

BELLE II pixel detector

- Gas cooling used in BELLE II pixel detector
 - Small vibration (<1um) with gas flow
 - 气流方向与硅表面平行, 振动不大

MDI interface for SID and SLD detector

- Liquid nitrogen cooling design for cooling was used in SLAC SLD detector
- ILC SID is also considering that

SID vertex detector

SLAC SLD vertex detector in MDI

CEPC vertex detector R & D: Research Goal

- Produce a world class vertex detector prototype •
 - Spatial resolution $3 \sim 5 \mu m$ (pixel detector)
 - Radiation hard (>1 MRad)
- Preliminary design of prototype •
 - Three layer, module $\sim 1 \text{ cm} \times 12 \text{ cm}^2$

Typical tracker

Typical module

Resolution

ATLAS/CMS upgrade (~15 µm)

> Alice upgrade (**5~10 µm**)

World leading This project (3~5 µm)

Overview of CEPC vertex detector R & D

- Can break down into sub-tasks:
 - CMOS imaging sensor chip R & D

 - Detector assembly
 - Data acquisition system R & D

• Detector layout optimization, Ladder and vertex detector support structure R & D

Full size vertex detector Prototype

Beam test to verify its spatial resolution

Detector module (ladder) R & D

- Sensors will be glued and wire bonded to the flexible PCB
- Flexible PCB will be supported by carbon fiber support structure
- Signal, clock, control, power, ground will be handled by control board through flexible PCB

Detector module (ladder)= 10 sensors + support structure+ flexible PCB+ control board

Detector module (ladder) R & D

- Completed preliminary version of detector module (ladder) design
 - Detector module (ladder)= 10 sensors + support structure+ flexible PCB+ control board
 - Sensors will be glued and wire bonded to the flexible PCB
 - Flexible PCB will be supported by carbon fiber support structure
 - Signal, clock, control, power, ground will be handled by control board through flexible PCB

3D model of the ladder

Design of Flexible PCB prototype

- Double side flex + rigid PCB for 10 chips(15.31 X 25.6mm)
 - 17.31mm X 257mm for flex part.
- Copper thickness: 0.5oz (18um)
- Signal width: 3mil/3mil, power supply width:20~60mil

Profile of flexible PCB

	Achieved	Op
	Thickness (µm)	gc
Polyimide	25	
Adhesive	28	
Plating Cu	17.8	
kapton	50	
Plating Cu	17.8	
Adhesive	28	
Polyimide	25	

12

Carbon fiber Support structure of the ladder • Fabricated first support structure prototype of the ladder (IHEP designed)

- 4 layer of carbon fiber, 0.12mm thick
- ~3 time thinner than conventional carbon fiber

7 8 9 20 1 2 3 4 5 6

Air Cooling test

- Test bench setup for air-cooling
- **Vibration follows Gaussian distribution**
 - Maximum displacement can above 10µm ullet
 - **Core of Gaussian is still under control** \bullet

-0.022

Test setup prototype for ladder cooling Use compressed air for cooling (See more from Jinyu's talk)

Displacement

Air Cooling test

- **Test bench setup for air-cooling**
- **Vibration follows Gaussian distribution**
 - **Maximum displacement can above 10µm** ullet
 - **Core of Gaussian is still under control** ullet

Test setup prototype for ladder cooling Use compressed air for cooling (See more from Jinyu's talk)

Typical Vibration displacement during air cooling

Cooling design

- Air cooling is baseline design for CEPC vertex detector
- Sensor Power dissipation:
 - Taichupix : $\leq 100 \text{ mW/cm}^2$. (trigger mode)
 - CEPC final goal : $\leq 50 \text{ mW/cm}^2$
- Cooling simulations of a single complete ladder with detailed FPC were done. • Need 2 m/s air flow to cool down the ladder to 30 °C
- - Testbench setup has been designed for air cooling , vibration ...

N	Max temperature of ladder ($^{\circ}$ C) (air temperatur					
Power Dissipation (mW/cm2)	Air speed (m/s)	5	4	3		
100		19.6	21.8	25.0	30	
150		26.9	30.1	35	43	
200		34.2	38.6	45.1	56	

Test setup for ladder cooling Use compressed air for cooling

Gantry for vertex detector prototype assembly 3~5um good position resolution require high assembly precision Cooperate with domestic company on R & D Gantry automatic module assembly. Pattern recognition with high resolution camera

- •
- Automatic chip pick-up and positioning •
- Automatic Glue dispending •

Gantry system

automatic glue dispending **Pattern recognition** 〒 昭 昭 🥴 🭳 🔍 🙁 28% ▼ 未处理同僚: K N

Tooling Design for Barrels Assembling

- 3 sets of tooling for 3 layer of barrel assembling.
- Tooling and special tool for inner and middle barrels assembling.

bling. lle barrels assembling.

• Bent silicon detector \rightarrow ultra-low material budget

From Magnus Mager, **IAS 2022 conference**

Bent silicon detector \rightarrow ultra-low material budget

From Magnus Mager, **IAS 2022 conference**

• Bent silicon detector \rightarrow ultra-low material budget

From Magnus Mager, IAS 2022 conference

• Small prototype has been fabricated

• We need to start thinking this technology for CEPC vertex detector and MPI design

summary

- 顶点探测器的一些需求:
- 束流管尽量采用小半径, 顶点探测器需要贴近束流管
- 非常需要20mm直径的束流管
- 束流管和顶点探测器支撑结构需要低物质量
- 温度 <= 20 C
- 两端温度梯度 < 10 C
- 振动< 1µm

