Requirements on the process for the next generation CMOS pixel sensor

Zhijun Liang, Hongbo Zhu, <u>Yunpeng Lu</u> 2022/2/23

Outline

- Motivation
- Strategic approach
- What we want
- What we may expect as the first step
- Summary

Disclaimers:

- This talk is **NOT** results of direct discussion with any capable foundry.
- The contents in this talk are more of personal view shared for internal discussion.
- The requirements listed here are subject to change when it is necessary.

Motivation

- Wafer-scale single sensor for one half cylinder
 - 12-inch wafer can accommodate 15cm * 25cm large sensor
 - Bendable when thinned down to < 50 um
- Extremely low material budget
 - Only silicon sensor in the acceptance region, gentle air cooling
 - Data transmitting as concentrated heat source outside the acceptance region
 - All power and signal lines integrated into the stitched sensor
- Improved position resolution
 - To shrink the pixel pitch with smaller feature size of MOS transistors

ECFA detector R&D roadmap

- 65 nm stitching process for the next generation CMOS pixel sensor
 - To cover the developments and experiments in 2020-2030
 - Specs to converge with hybrid in the long run

"Technical" Start Date		< 2030			2030 -2035		2035 -2040)40 2040 - 2045		> 2045		
		ALICE LS3	Belle II CBM	NA62	LHCb, ATLAS, CMS (≳ LS4) ⁷⁾	ALICE 3 - EIC	ILC	FCC-ee	CLIC	FCC-hh	Muon Collider	
MAPS	technology node ¹⁾	65 nm - stitching	65 nm - stitching			28 nm ≲ 28 nm		≃ 10 nm	≲ 28 nm			
	pitch	10 - 20 μm	10 - 20 μm			pitch $\lesssim 10~\mu m$ for $\sigma_{\rm hit} \lesssim 3~\mu m$ in VD						
						Reduce z-granularity in TK - pad granularity in analog Cal.						
	wafer size ²⁾	12"	12"		12"							
	rate ³⁾		O(100) MHz/cm ²						5 GHz/cm ²	30 GHz/cm ²		
	ultrafast timing ⁴⁾				$\sigma_t \lesssim 100 \text{ ps}$					$\sigma_t \lesssim 20 \text{ ps}$		
	radiation tolerance				3 x 10 ¹⁵ neq/cm ²					10 ¹⁸⁽¹⁶⁾ neq/cm ² VD/Cal.(Trk)		
Planar/3D/Passive CMOS	technology node ¹⁾				ASIC 28 nm	ASIC 28 nm ASIC \lesssim 28 nm			ASIC \simeq 10 nm	ASIC ≲ 28 nm		
	pitch				\lesssim 25 μm in VD	\lesssim 10 μ m for $\sigma_{\!_{hit}}$ \lesssim 3 μ m in VD						
						\lesssim 50 μ m for $q_{hit} \lesssim$ 10 μ m in Trk						
	wafer size ²⁾		12"					12"				
	rate ³⁾				6 GHz /cm ²					30 GHz/cm ²		
	ultrafast timing ⁴⁾			$\sigma_t \simeq 50 - 100 \text{ ps}$		$\sigma_t \lesssim 100 \text{ ps}$			$\sigma_t \lesssim 20 \text{ ps}$			
	radiation tolerance				6 x 10 ¹⁶ neq/cm ²					10 ¹⁸⁽¹⁶⁾ neq/cm ² VD/Cal.(Trk)		

CIS or HV-CMOS

- Choice seems obvious: CIS for vertex, HV-CMOS for tracker
- Be reminded that the choice depends on
 - How much depletion achieved
 - Availability and cost
 - Stitching option
 - Low power and radiation hardness
- Other possible technologies, such as placing the junction on the backside of wafer

Maximum or minimum requirements

- Maximum requirements can stretch our capability to the utmost potential
 - 65/55 nm CIS process with stitching option
 - Limited to a few major foundries in the mainland of China
 - Difficult but should try firstly
- Minimum requirements allows more flexibility and accessibility
 - 180 nm or smaller process line
 - 8-inch wafer without stitching
 - Open to possibly more foundries and process lines accessible
 - A survey may be made depending on situations.

What we want

CIS process

- 12-inch wafer, stitching
- 65nm / 55nm feature size
- N-Well / P-Well / Deep-N-Well / Deep-P-Well
- 5~6 metal layers
- Starting material (to be validated and verified by the foundry)
 - Thickness of epitaxial layer ~10 um
 - Resistivity ~kΩ·cm
- Possible adding-on implantation
 - Low dose N-TYPE IMPLANT //
 - To improve the NIEL and/or CCE

	COLLETION ELECTRODE							
PW NW DEEP PW		NW PW DEEP PW						
EPI (P-)	DEPLETED ZONE							
P+ SUBSTRATE								
PW NW DEEP PW	N /	NW PW DEEP PW						
DEPLETED ZONE EPI (P-)								
P+ SUBSTRATE								
	CIS	Contraction of the second seco						

What we may expect as first step

- Manufacturing process
 - 12-inch wafer, **stitching**
 - 65nm / 55nm feature size
 - N-Well / P-Well / Deep-N-Well / Deep-P-Well (User obliged to define and verify it)
 - 5~6 4 metal layers
- Starting material (standard wafer)
 - Thickness of epitaxial layer ~10 5 um
 - Resistivity ~kΩ·cm 10 Ω·cm
- Possible adding-on implantation
 - Low dose N-TYPE IMPLANT
 - To improve the NIEL and/or CCE
- Long turnaround time due to the chip shortage in IC industry

Process Simulation

Chunhao Tian / USTC

Simulation of Charge Collection Chunhao Tian / USTC

- MIP: 80 pairs / um
- Charge deposited: 400e (epitaxial layer)
- Charge collected: **526e**
 - Substrate contributing 20% of charge
 - Charge collection time: **5ns** (90%)
 - Hit on the center of N-Well

10

Summary

- Next generation CMOS pixel sensor based on 12-inch wafer and stitching
 - Extremely low material budget
 - Improved position resolution
- Maximum and minimum requirements are listed for discussion
 - 65/55 nm CIS process with stitching option on 12-inch wafer
 - <u>90 nm or even larger</u> process line on <u>8-inch wafer w/o stitching</u>
- Modification of process can rely on users, while customized wafers have to be accepted and validated by foundry.

Thanks for your time!