R&D for an L-band photocathode RF gun with high bunch charge

ACC-Center Linac Group Li Xiaoping

Outline

- Background & Motivation
- R&D Content and Objectives
- Existing research basis
- Funding requirements

Outline

Background & Motivation

• R&D Content and Objectives

• Existing research basis

Funding requirements

Advantages of a photocathode RF-Gun

A short pulse laser with a certain wavelength (usually UV) is incident on the photocathode material to produce photoelectrons, which are extracted through a high gradient electric field formed by RF power. Common types of photocathode RF-Gun including S-Band, L-Band, C-Band and VHF band for CW operation.

- The transverse and longitudinal distribution of electron beam are determined by the incident laser, which can realize short or even ultrashort pulse beam
- 2. The electron beam with **specific longitudinal density distribution** can be realized through **laser pulse shaping**
- 3. Small initial thermal emittance and high gradient field on the cathode surface (necessary to obtain high bunch charge electron beam with a small emittance)

Background & Motivation --- Typical application

S-Band

C-Band

VHF

Cathode field Typical beam parameters Application 0.5-1µmrad@500pC-1nc S-band 120MV/m LCLS, SXFEL 10Hz-120Hz 0.6µmrad@500pC L-band 60MV/m **EuroFEL** 10Hz/4.5MHz (670µs Macro pulse) **C-band** 160MV/m 100-300PC@0.4-0.6 VHF 20-30MV/m LCLSII, SHINE CW operation/1MHz

1. For CEPC Linac injector

Parameter	Symbol	Va	Unit	
		e ⁺ injection	e ⁻ injection	
Bunch Charge	q	10	1	nC
Transverse Emittance	ϵ_{\perp}	100	100	mm.mrad

 A thermionic cathode electron gun and subharmonic bunching system are considered in Linac baseline design. The scheme selection of **injection timing** is very complex and low flexibility due to the existence of subharmonic RF frequency.

f	SHB1	SHB2	Linac	DR	booster	collider
MHz	143	572	2860	650	1300	650

- ② If a photocathode RF-Gun is considered as an alternative, it can replace the thermionic gun and subharmonic bunching system, and the injection timing is **very flexible**
- ③ And the Linac injector can produce electron beam with **much smaller emittance**

2. Plasma WakeField Accelerating, an alternative of Linac

Basic beam requirements

- Required a high peak current and small transverse emittance of electron beam in the plasma cell → high bunch charge + bunch compression in main LINAC + laser drive photocathode
- ② Specific triangle and trapezoidal longitudinal distribution beam for High Transformer Ratio in plasma cell → Laser pulse shaping in injector + longitudinal shaping preservation
- ③ A photocathode RF-Gun with high bunch charge is the **first choice** of PWFA electron source

3. For future development (FEL & others)

- As an electron source for producing small emittance and short pulse electron beam, photocathode RF-Gun is an essential core equipment of FEL injectors. At present, almost all the FEL projects use photocathode RF gun as electron sources.
- ② To develop first photocathode RF-Gun at IHEP. (almost all RF-Guns were developed by Tsinghua University, S, L, VHF...)

• R&D Content and Objectives

Existing research basis

Funding requirements

Technical route: L-Band NC1.6 cell photocathode RF-Gun

- L-Band has a long RF linear region, which is effective to generate large bunch charge and is possible to realize the simultaneous generation of driving beam and witness beam in one RF period
- ✓ Large acceleration aperture is effective to extract large bunch charge
- ✓ High gradient on cathode surface is effective to generate low emittance beam

L-Band photocathode RF-Gun				
Frequency (MHz)	1300			
Cathode gradient (MV/m)	60-80			
Peak rf power (MW)	6.5-12MW			
RF pulse length (µs)	≥10			
RF repetition (Hz)	1-100			
Energy at gun exit (MeV)	7-8			

Content 1: L-Band RF-Gun cavity

- The physical design, RF design, water cooling structure optimization and mechanical design of 1.3GHz/1.6cell RF-Gun cavity
- Design and development of a 1.3GHz/15MW ceramic window
- Processing and cold test of 1.3GHz/1.6Cell prototype cavity
- High power test

Content 2: Laser pulse shaping of UV laser and beam test

- Research on UV drive laser (Ti: sapphire laser and third harmonic generation)
- Longitudinal pulse shaping experiment (pulse generation with specific distribution)
- Single bunch and two-bunches generation experiment
- From metal cathode to Cs₂Te (High QE, high bunch charge at low laser power)

Objectives in Stage 1

- Complete the design and development of a L-band photocathode RF-Gun cavity
- Build a high-power test bench for L-band cavity
- High power test with a copper cathode (60MV/m@6.5MW, 70MV/m@9MW, 80MV/m is limited by the power of L-band klystron)

Objectives in Stage 2

- UV laser realizes a single pulse **5mJ** and **1mJ** after third harmonic generation
- Preliminarily realized the **longitudinal shaping** of UV laser for beam experiment
- Build a short beam line for beam experiment and obtain an electron bunch at the exit of RF-Gun with a 5nC bunch charge

Long term objectives

- The drive laser generates two laser pulses with fixed interval, which are used for two electron bunches required by PWFA (drive beam and witness beam for electron). Bunch charge reaches **6.5nc/1.2nc**, and the longitudinal distribution is **fully adjustable**
- Upgrade the L-band klystron (increase peak RF power) to increase the bunch charge
- Develop a liquid nitrogen cooled photocathode RF-Gun (Cold RF gun) to pursue higher cathode field and larger bunch charge (>80MV/m, >15nC)

- Background & Motivation
- R&D Content and Objectives
- Existing research basis
- Funding requirements

Preliminary bean dynamics study

 According to the beam parameters required by PWFA, the preliminary simulation results show that using an L-band photocathode RF-Gun can produce the required longitudinally specific distribution of electron beam, and the transverse emittance meets the requirements. (Shu Guan)

Preliminary bean dynamics study

 According to the beam parameters required by electron injection (1nc e⁻) and positron injection (10nc e⁻) of CEPC Linac, the preliminary simulation results show that using an L-band photocathode RF-Gun can produce electron beams that meet the requirements. (Xin TianMu)

Existing equipment and test site

- Already have an L-band klystron (Prof. Jie Gao) from Thales in France. The specific parameters of this klystron are 1300MHz/2ms/5MW/100kW. And it can also work at short pulse mode, such as 1300MHz/10µs/10MW/10kW, so as to meet the peak power required for the first stage high power test of the L-band photocathode RF gun (Maximum up to 10MW)
- Also have a solid-state modulator can be used for L-band klystron (pulse width can be adjusted to > 10µs)

Existing equipment and test site

 The test benches in Yuquan Lu No.9 hall and Huairou HEPS Linac power source hall both can be used as test site for L-band RF-Gun high-power test

Outline

- Background & Motivation
- R&D Content and Objectives
- Existing research basis
- Funding requirements

Funding requirements

Stage 1 (Total: 1.40-1.50 Million)

- L-band 1.6Cell RF cavity, **0.9M** (Tsinghua quotes for **2M** only for prototype cavity)
- L-band ceramic window, 0.1M
- Copper cathode and load-in system, **0.1M**
- Build the test bench (vacuum equipment, inflatable waveguide, LLRF and control system, 0.3-0.4M)

Stage 2 (Total: ~4.50 Million)

- UV laser with a single pulse 5mJ@100Hz and experiment on longitudinal shaping, 3M
- Beam line for beam test, 0.5M
- Cs₂Te photocathode and its load-lock system, 1M

Long term (Total:

• Upgrade the L-band klystron or **Cold RF-Gun**, ???

Thanks!